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Abstract

The crude and refined oil, water, and other liquids are widely transported through

pipelines over long distances within geographical boundaries of countries or beyond.

Pipeline accidents, however, are frequent, affecting operation and reducing targeted

performance. The frequency of these accidents presents a growing concern and neces-

sitates the need for an effective health monitoring plan. This plan requires monitoring

of flow conditions and warning of any changes or abnormal conditions. Abnormali-

ties in the flow conditions include changes in the piping system performance due to

defects, such as leaks and blockages. These changes can be located and quantified

utilizing different approaches. Two effective and economical approaches are: i) ob-

servation of pressure oscillations and, ii) acoustic signal monitoring. This may be

conducted by comparing the data set for an intact pipe and a pipe with a fault to

diagnose the defect and prepare an appropriate course of action.

This work develops two practical approaches to detect abnormal conditions caused

by a defect in the pipeline. In the first approach, the transfer matrix method is applied

to detect a partial blockage or a leak in liquid pipelines using the first four harmonics

of the pressure oscillations produced by a sinusoidal movement of a downstream

valve. Unlike most relevant available methods which use a large number of harmonics

to analyze the pattern of the frequency response diagram, this study uses only the

first four harmonics to investigate the effect of a leak or a partial blockage on the

amplitude of pressure head oscillations. A relationship between the location of the

blockage or the leak and the amplitude of pressure head oscillation is developed

for each lower harmonic in the steady-oscillatory flow. The effects of steady and
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unsteady friction and pressure head oscillation nodes are discussed. The results show

a satisfactory agreement with those obtained in the time domain using the method

of characteristics and with the experimental data reported in the literature.

In the second approach, a primary zone representing the inspected length of the

pipe is scanned for potential defects by installing a set of acoustic sensors on the exte-

rior surface of the wall of the pipe. The acoustic signal emitted due to the interaction

between the defect and the liquid flow is recorded and analyzed. The characteristics

of this signal depend on the location and size of the defect. For instance, the existence

of a partial blockage causes a hump in the plot of the relationship between the accu-

mulated signal strength and the sensor location, the height of which is proportional

to the blockage size. Following this approach, an application is developed to detect a

partial blockage in a simple reservoir-pipe-valve system. The experimental results are

verified by computational fluid dynamics (CFD) simulations including solution of the

Reynolds-averaged Navier-Stokes equations using the FLUENT commercial package

within the ANSYS software. The numerical results show a spike in the plot of the

relationship between the sensor location and a number of selected flow parameters in

the vicinity of the blockage location in an agreement with the experimental results.

In summary, the two approaches proposed in the current study represent simple

techniques that may be used for detection of defects in short or long pipelines. The

first approach including measurements of pressure head oscillations at one location

may be used in the case of limited access to the entire length of the pipeline, while the

second approach including monitoring of the acoustic signal may be used for short

pipes with a full access to the entire length of the pipe. The two approaches may be

extended to detect defects in pipelines including flow of different fluids, such as gas

and steam.
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Chapter 1

Introduction

Two common abnormalities in pipelines transporting liquids are leaks and blockages.

Leaks may be detected by direct observations, such as visual or video inspection

or by inference methods, such as frequency-domain analysis. However, in some cir-

cumstances, there is no access to the entire length of the pipeline which makes it

necessary to apply remote detection techniques. On the other hand, blockages in the

pipeline always cannot be detected by direct observations regardless of the access to

the entire length of the pipeline. Therefore, current study includes two approaches

depending on the availability of pipeline access: a pressure monitoring approach with

a downstream valve oscillation to detect pipeline abnormalities from one location;

and an acoustic-emission approach in which a primary zone of the pipe is scanned for

a potential partial blockage detection.

1.1 Research Motivation

Transportation of liquids in pipelines faces considerable challenges including pipeline

accidents caused by abnormal conditions. These abnormal conditions may result in

considerable safety issues, such as pipe explosion and failure due to significant reduc-

tion in the pipeline cross-sectional area or hazardous fluid leakage. For instance, in

2016, the explosion of a major gasoline pipeline in Alabama, which is a crucial fuel

supply source for the US East Coast, resulted in death of one worker, injured five

others and produced a fuel crisis in many southern states of the USA. It is clear that
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pipeline accidents are not only threatening operators’ and public life but are more

affecting economy. They cause reduction in the flow rate and dissipation of energy.

Therefore, these hazardous conditions and their costly remedies necessitate the need

for an effective health monitoring plan.

1.2 Pipeline Health Monitoring Approaches

There are many pipeline health monitoring approaches, each with advantages and

disadvantages. The cost and risk of implementation are the two most effective param-

eters for the selection of a certain technique. Among these approaches, the most eco-

nomical and global are the pressure transients and acoustic wave techniques (Owowo,

2016) in which a pipeline responses to a certain exciter, or a defect interacts with the

flow characteristics, producing information about potential abnormalities. These two

approaches are adopted in the current study.

1.3 Research Objectives

The main objective of the current work is to develop suitable health monitoring ap-

proaches for detecting pipeline abnormalities, including leaks and blockages. Two

approaches are traditionally proposed and applied for different piping systems. The

first approach includes the pressure head observation of steady-oscillatory flow, while

the second approach includes monitoring of the acoustic signal emission. In fact, most

of the steady-oscillatory flow methods use several harmonics to excite the liquid flow

which requires more operation efforts and safety concerns. In contrast, the approach

proposed in the current study requires running the system very few times to extract

the required information for abnormalities detection. The second approach includes

application of the acoustic signal emission technique in such a way that exploits the

2
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interaction between the pipe abnormality and the steady-flow characteristics to de-

tect the proposed defect in the pipe. It considers a primary zone of the pipe under

investigation by installing detection sensors on the external wall of the pipe without

any interaction with the liquid flow.

1.4 Research Limitations

The technique presented in Chapters 3 and 5 of this study utilizes the pipeline sys-

tem response to a set of excitation harmonics, including oscillations under the natural

frequency of the pipeline. Oscillating the liquid flow in a pipeline at the natural fre-

quency may cause pressure amplification and resonance. However, care should be

taken that the approach is applied within the design limit of the pipeline. For the

acoustic emission approach, the noise of the ambient environment must be considered

and the approach should be applied in controlled vibrational settings to avoid noise

and irrelevant signals interaction.

1.5 Contribution to Knowledge

The technique presented in Chapters 3 and 5 of this study includes the reduction of

efforts and requirements for the current steady-oscillatory approaches used for defect

detection to only few runs to detect a potential abnormality in liquid pipelines. In

addition, the study introduced in Chapter 4 including the acoustic emission approach

presents a very simple and economical methodology for blockage detection. Unlike

most available techniques which require interaction with the liquid flow in the pipe

and cumbersome data analyses, this approach keeps the pipe under normal operation

and requires simple data analysis.

3
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1.6 Dissertation Outline

The current dissertation presents two main approaches developed for the health mon-

itoring of liquid pipelines: an acoustic emission technique applied under steady-state

flow conditions and a pressure oscillation approach applied under periodic flow condi-

tions. The two approaches are applied successfully for the problem of partial blockage

and the first approach is applied for leak detection. This dissertation comprises six

chapters including presentations of the two proposed approaches. Chapter 1 includes

an introduction in which research motivations, health monitoring approaches, re-

search objectives, research limitations, contribution to knowledge, and dissertation

outlines are presented. Chapter 2 includes a brief literature review on the two ap-

proaches for blockage detection problem and the second approach for leak detection

problem. Chapter 3 presents the technique of using lower harmonics of pressure os-

cillations for blockage detection in liquid pipelines. This research is published in the

Journal of Hydraulic Engineering of the American Society of Civil Engineers (ASCE)

(Al-Tofan et al., 2018). Chapter 4 includes application of the acoustic emission tech-

nique for blockage detection in liquid pipelines. It also includes flow field description

over the primary zone of the pipe and in the vicinity of the blockage location, us-

ing the traditional CFD simulations with Reynolds-averaged Navier Stokes equations

solved by FLUENT commercial package within the Ansys software. This work is

presented in the 60th working group of acoustic emission conference in Charleston,

SC on June 19th 2018. Chapter 5 presents the technique of using lower harmonics of

pressure oscillations for leak detection in liquid pipelines. Lastly, Chapter 6 includes

summary and conclusions of both detection approaches for blockage problem and the

pressure oscillation approach for leak detection.

4
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Chapter 2

Literature review

2.1 Blockage Detection by Using Lower Harmonics of Pressure

Oscillations

Blockages in pipelines occur for different reasons including, but are not limited to,

freezing, hydrate accumulation, chemical deposition, grease build-up, and valve jam-

ming (Wang et al., 2005; Mohapatra et al., 2006; Sattar et al., 2008; Wang et al., 2012;

Meniconi et al., 2013). As the blockage protrudes transversely or extends longitudi-

nally, it causes serious problems, such as reduction in the flow rate and dissipation of

energy. In addition, it may results in safety issues, such as pipe failure that may oc-

cur due to significant reduction in the pipeline cross-sectional area. These hazardous

conditions and their costly remedies necessitate the need for an effective pipeline

blockage detection plan.

Blockages, unlike other pipeline abnormalities, can not be detected by direct meth-

ods, such as visual inspection. However, they may be detected by many other tech-

niques such as hydraulic transient analysis. These techniques are based on different

analytical, numerical, experimental and field approaches. Wang et al. (2005), for

example, developed a method for partial blockage detection depending on the tran-

sient damping caused by a partial blockage. Their work included development of an

analytical solution in terms of a Fourier series. Lee et al. (2008) proposed the use

of fluid transients as a non-invasive technique for locating blockages in transmission

pipelines. They related the oscillatory patterns of the peaks of the frequency response

5
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diagram to the location and size of the blockage and presented a simple analytical

expression that can be used to detect, locate, and size discrete blockages. Duan et al.

(2011) presented a technique for detecting extended blockages in pressurized pipelines

utilizing Frequency Response Method (FRM). Their technique included detection of

the extended blockage by examining the resonant peaks in the frequency domain us-

ing the transfer matrix method (TMM) and verified by the method of characteristics

(MOC). They concluded that the existence of an extended blockage causes a shift in

the resonant peaks as compared to those for the original intact pipe with no block-

age. Tuck et al. (2013) studied the effect of extended blockages on the fundamental

frequency and the maximum pressure head and concluded that, as the pipe diameter

reduces with age, the maximum transient response may increase thereby making the

pipeline susceptible to fail. They, also, compared the numerical and experimental

results with good agreement for the first period of oscillations. Duan et al. (2013)

verified experimentally their previously obtained analytical results using six different

blockage tests over a range of Reynolds number. Their experiments show a good

agreement with the theoretical predictions. Meniconi et al. (2013) conducted experi-

ments on partial blockage detection in pipelines. They performed both pressure signal

and frequency response analysis showing that the first analysis is most accurate for

locating the blockage, while the second is most accurate for determining the radial

constriction and blockage extension. Massari et al. (2014) developed a new algorithm

for blockage detection using transient pressures and a stochastic linear approach to

estimate the pipe diameter. In a later publication, they compared their algorithm

with experimental case studies and showed that a good estimate of the blockage size

and extent can be obtained by pressure measurements following a fast valve closure

(Massari et al., 2015). Meniconi et al. (2016) analyzed the mechanism of interaction

of pressure waves at a discrete partial blockage. Their experiments show two interac-

tion mechanisms: sinuous for partially closed in-line valves and straight for small bore

6
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pipe devices. Scola et al. (2017) proposed a method based on the frequency model-

ing to detect simultaneous blockages and leaks occurring in the pipeline. They also

discussed the effect of the pipe friction in their detection approach and introduced a

term to reduce its effect by increasing the excitation frequency.

In fact, many previous detection techniques that use frequency domain analysis ei-

ther neglect friction effect or consider only steady friction since an accurate universal

unsteady friction model is presently unavailable. However, the unsteady friction in

the transient analysis is currently a subject for continuous research where several rel-

evant approaches are continuously proposed. These approaches may be classified into

three categories: Quasi-2D, instantaneous acceleration based (IAB), and convolution

integral methods (Chaudhry, 2014). The first two categories are either computa-

tionally intensive, requiring transient simulation of the entire system, or involving

calibration of empirical coefficients (Chaudhry, 2014; Khilqa et al., 2017; Duan et al.,

2017). The last category involves the development of a weighting function and is

suitable for relatively small simple piping systems (Duan et al., 2017). They were

introduced by Zielke (1968) for laminar flow and adapted for turbulent flow by many

researchers, such as Vardy and Brown (2003), Vitkovsky et al. (2003), and Meniconi

et al. (2014). Unlike the IAB models, the convolution-based models utilize the re-

sults of a set of previous time steps and hence describe the signal better in turbulent

flows at low Reynolds number (Martins et al., 2017). In the current research, both

steady and unsteady friction and their effect on the blockage detection approach are

considered.

To detect a partial blockage, the frequency response diagram (FRD) of a piping

system over a wide range of harmonics for a blocked pipeline may be compared with

that of a healthy one. Following this approach, Mohapatra et al. (2006) used the

transfer matrix method in the frequency domain with odd harmonics for periodic

oscillation of a downstream valve to present a methodology for detecting partial

7
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blockages in single pipelines. The peaks of the pressure frequency response at the

oscillating valve was utilized to detect the partial blockage location. They related

the odd harmonics FRD pattern with the blockage location. Sattar et al. (2008),

on the other hand, used the FRD with even harmonics to detect partial blockage in

a pipeline utilizing the troughs of the the pressure head oscillations. They claimed

that the system response at even harmonics gives, in some cases, better indication of

the blockage existence than the response at odd harmonics depending on the system

parameters. In contrast, Gong et al. (2013) compared odd and even harmonics for

leak detection and found that the approach using odd harmonics is superior because

it eliminates the aliased leak locations. In addition, Sattar et al. (2008) and Meniconi

et al. (2013) indicated that a partial blockage reduces the amplitude of the pressure

head oscillation at odd harmonics and increases it at even harmonics. Also, Duan

et al. (2014) showed that a discrete or an extended blockage changes the amplitude

of oscillations in a pressurized water pipeline at resonance for both odd and even

harmonics. However, additional investigations are needed to analyze this change in

the pressure oscillations for a single frequency with different blockage locations.

As discussed earlier, traditional FRD methods require analyzing the system sev-

eral times under different modes of oscillation in order to determine the blockage

location. For example, the system considered by Mohapatra et al. (2006) requires

100 runs to determine the range of possible blockage locations between 200 and 233

m of a 1600 m long pipeline. More runs are required, with higher harmonics, in

order to achieve a greater precision. However, for higher harmonics, the frequency of

the valve oscillation is increased, producing higher noise in the acquired signal and

requiring serious operational considerations and safety concerns (Lee et al., 2008). In

addition, computational deficiencies related to the use of higher harmonics in certain

situations require increased computational time to keep a certain level of accuracy.

For instance, the satisfactory agreement between considering a tapered pipe per se
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and a substitute equivalent pipe with a certain number of segments is limited to the

fifth harmonic (Chaudhry, 2014). For the number of harmonics greater than five,

the analysis requires increasing the number of reaches to get reasonable accuracy. In

addition, the damping effect due to the unsteady friction increases and the amplitude

of the pressure head oscillation decreases at higher harmonics (Sattar et al., 2008).

In contrast to the traditional FRD methods, the technique proposed by the cur-

rent study uses lower harmonics for the detection of the partial blockage in liquid

pipelines. It utilizes the effect of the blockage location on the amplitude of the pres-

sure head oscillations in a pipeline with liquid flow excited by a sinusoidal opening

and closing of a downstream valve at the first four harmonics.

2.2 Blockage Detection by Continuous Emission of Acoustic Signal

One of the most common abnormalities in the liquid transporting pipes is the partial

blockage. Partial blockages need to be detected and cleared in order to avoid unnec-

essary energy losses and flow-rate reductions. Traditionally, there are a number of

techniques used to detect partial blockages in liquid pipes. The acoustic technique

is one recent approach in which a non-destructive test is applied to detect pipe ab-

normalities, such as blockages and leaks. Acoustic techniques may include acoustic

pulse reflectometry methods or acoustic emission methods. The former includes in-

jection of a small sound pulse into the fluid body and trace the sound wave reflections

due to the abnormalities by acoustic sensors, microphone, or hydrophones (Juliano

et al., 2012). Reflections of the sound wave may also be caused by fittings along the

pipe wall which interfere with the detection approach and increase the method com-

plications. Following acoustic reflectometry technique, Papadopoulou et al. (2008)

transmitted the acoustic signal into the fluid in the pipe via a loudspeaker driven by

an acoustic pulse generator. They measured the signal reflections by a microphone
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and compared its characteristics for different pipe conditions. Even though their

results are not conclusive, they provide sufficient justification for a second phase of

experiments. In a later research, Silva et al. (2014) conducted experimental acoustic

tests supported by numerical simulations considering the acoustic propagation be-

haviors and their effects on the pipeline system dynamics. Their results show that

it is possible to continuously monitor a pipeline remotely to detect a blockage and

provide its size and location. In fact, many of the pipe defects occur at or close to the

valves. The latter are monitored and analyzed by Yan et al. (2015) who presented

an application of AE technique in this regard discussing the AE signal and analyz-

ing its parameters of interest. They concluded that the AE root-mean-square has a

strong relationship with the valve and fluid parameters (valve type and size, leakage

rate, inlet pressure, and fluid type). However, how the acoustic emission technique

is applicable and reliable has been a question for many researchers and a topic for

further research and analysis. In this regard, Brunner and Barbezat (2006) recorded

AE signals and AE waveforms from sensors mounted on an 60 mm aluminum pipe

having fluid flow under operating pressures within the range 5-8 bars for two pipe

conditions: an intact pipe and a pipe with a leak. He concluded that the conventional

AE signal parameter analysis does not seem suitable for leak detection as compared

to the waveform analysis in which distinct high-frequency components of a leaky pipe

are obtained as compared to the no-leak condition. In contrast, Giunta et al. (2012)

conducted a study to investigate the reliability and applicability of the AE technique

for health monitoring of a steel pipeline. They concluded that the rate of the AE

energy is strictly related to the density of the source generated by the progressive

damage of the pipe material caused by internal fluid pressure. Brunner and Barbezat

(2006) also reported that the flow of water in the test system produces a continuous

acoustic emission whether there is a leak in the pipe or not. Similarly, for a pipe

with a partial blockage, the interaction between the liquid flow and the partial block-

10



www.manaraa.com

age causes a continuous emission of acoustic signal. This continuous emission of the

acoustic signal may be used for detecting a possible partial blockage, as discussed in

Chapter 4 of the current study.

2.3 Leak Detection by Using Lower Harmonics of Pressure

Oscillations

Leaks in pipelines occur for different reasons including, but are not limited to,

earth movement, damage from nearby excavation, sabotage, terrorism, and corrosion.

The latter may occur at construction joints, low points of moisture accumulation, or

locations of imperfection in the pipes (Boaz et al., 2014). Leaks present a safety

and health hazard where pollutants may enter the pipeline if the inside pressures are

low. In addition, leaks present an economical concern as they result in energy losses

(Colombo et al., 2009). Colombo and Karney (2002) evaluated the impact of leaks on

water quality relating the leak size and location to the residence time and discussed

the potential entry of contaminated groundwater, pathogens, and soil constituents

into the leaky pipes. They also illustrated the potential importance of energy costs

of leaky pipes, concluding that the leak is related to the percentage increase in en-

ergy cost in a second-order polynomial function. Taking these environmental and

economical hazards to consideration allows the preparation and implementation of

an effective leak detection plan.

Leaks may be detected by direct observations, such as video inspection or by

inference methods, such as frequency-domain analysis (Covas et al., 2005). Numer-

ous papers present an extensive literature review for leak detection in liquid and gas

transporting pipes with a variety of methods (Cole, 1979; Black, 1992; Colombo et al.,

2009; Puust et al., 2010; Murvay and Silea, 2012; Boaz et al., 2014; Fiedler, 2014;

Geiger et al., 2006). As the current leak detection approach is based on the frequency-
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domain analysis, only some of the closely relevant works are considered in this section.

Mpesha et al. (2001) applied the frequency response method to detect and locate leaks

in single, series, parallel, and branched piping systems. They showed that there are

secondary pressure amplitude peaks in the frequency response diagram of a piping

system with a leak as compared to a healthy system with no leak. They limited their

method for pipelines with a friction factor between 0.01 to 0.025 and for a leakage

rate of up to 0.5% of the mean discharge with uncertainties in the system parameters

not taken in consideration. Covas et al. (2005), on the other hand, proposed a leak

detection technique in pipelines using the standing wave difference method, originally

used for cable fault location in electrical engineering. They indicated that a leak in

a pipeline creates resonance effect in the pressure signal with a secondary superim-

posed standing wave that can be used for leak detection. They applied this method

on different system configurations including a simple reservoir-pipeline-valve and a

reservoir-loop-pipe-valve systems. However, their technique requires safety analysis

in terms of nodes and antinodes location. In addition, the effect of unsteady friction

is not considered in their model. Sattar and Chaudhry (2008) proposed a technique

for leak detection utilizing the increase in the amplitude of pressure head oscillations

at even harmonics prompted by a leak in the pipeline. They used a simple reservoir-

pipe-valve system with a downstream valve that closed and opened in a sinusoidal

movement. They verified their results with those obtained in the time domain using

the method of characteristics (MOC). They also discussed the effect of steady and

unsteady friction on their model results. However, their technique requires extraction

of a wide-range of frequency response diagram (FRD) to detect the leak location. The

latter requirement presented a growing concern for many operators and researchers.

It may be relatively acceptable to oscillate the downstream valve at lower harmon-

ics, but may be impractical and unsafe to oscillate the downstream valve at higher

harmonics. The concerns of oscillating the downstream valve at higher harmonics in-
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clude, but are not limited to, increase of noise in the acquired signal (Al-Tofan et al.,

2018), operational and safety issues (Lee et al., 2008), increased analysis and com-

putational time in some piping systems (Chaudhry, 2014), and increase of damping

effect due to unsteady friction (Sattar, 2015).

Due to these concerns, researchers avoid oscillating valves at higher harmonics.

One of these attempts is by Lee et al. (2005a) in which a peak-sequencing method

is proposed to determine a segment of the pipe length that contains the leak. Their

method adopts a comparison of the relative sizes among peaks in the frequency re-

sponse diagram (FRD) and matching the observed and calculated patterns within a

lookup table. They presented this table for the first three odd harmonics in which the

resonant peak responses intersect at five locations and divide the pipe length into six

unequal regions. This technique presents a reduced effort for leak localization; how-

ever, it gives only a range of the pipe length in which the leak exists. Furthermore,

the effect of friction on the intersection points of the responses at different harmonics

in not analysed. The latter effect may distort the intersection points and mess the

classified regions on the pipe length, as discussed later in the current study. In a later

research, Gong et al. (2012) presented a leak detection technique in pipelines based

on the first three resonant responses. The input signal to their technique requires a

bandwidth of up to the fifth harmonic (five times the fundamental frequency of the

pipeline). Their results are based on the frequency domain solution with a linearity

assumption in the governing equations and are not compared to those obtained in the

time domain under non-linear settings. In addition, they used only odd harmonics,

reporting in a later research (Gong et al., 2013) that using odd harmonics is superior

in comparison to the even harmonics, because it eliminates the aliased leak locations.

In contrast, Sattar and Chaudhry (2008) showed that the system response at even

harmonics has the advantage in giving better indication of the leak existence over the

response at odd harmonics in some cases, depending on the system parameters. This
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advantage is in terms of higher value of the leak-induced pattern at even harmonics

in some systems with the same leak discharge, as observed in some figures of Covas

et al. (2005) and Mohapatra et al. (2006).

The technique proposed in the current study uses lower harmonics for leak detec-

tion in liquid pipelines. It utilizes the effect of the leak location on the amplitude of

the pressure head oscillations in a pipeline with a liquid flow excited by a sinusoidal

opening and closing of a downstream valve at the first four harmonics of the pipeline,

two odd harmonics and two even harmonics.
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Chapter 3

Use of Lower Harmonics of Pressure

Oscillations for Blockage Detection in Liquid

Pipelines ∗

3.1 Introduction

As discussed in Chapter 1, this study , in contrast to the traditional FRD methods,

proposes to use lower harmonics for the detection of the partial blockage in liquid

pipelines. It utilizes the effect of the blockage location on the amplitude of pressure

head oscillations in a pipeline with liquid flow excited by a sinusoidal opening and

closing of a downstream valve at the first four harmonics.

3.2 Frequency Domain Analysis

Transient flow in a pipeline shown in Fig. 3.1 may be described by the following

continuity and momentum equations after dropping the convective acceleration terms

which are typically small in most of the engineering applications and may thus be

neglected (Chaudhry, 2015):

∗Al-Tofan, M., M. Elkholy, S. Khilqa, J. Caicedo, and M. H. Chaudhry (2018). Use
of lower harmonics of pressure oscillations for blockage detection in liquid pipelines. DOI:
10.1061/(ASCE)HY.1943-7900.0001568. JournalofHydraulicEngineering 145 (3), 04018090.
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Figure 3.1 Piping system for blockage detection.

∂Q

∂x
+ gA

a2
∂H

∂t
= 0 (3.1)

∂H

∂x
+ 1
gA

∂Q

∂t
+ fQ2

2gDA2 = 0 (3.2)

where H is the instantaneous pressure head, Q is the instantaneous flow rate, a is

the wave speed, g is the acceleration due to gravity, f is the Darcy-Weisbach friction

factor, A is the cross-sectional area of the pipe, x is the distance along the pipeline,

positive in the downstream direction, t is the time and D is the pipe diameter.

The instantaneous pressure head H and instantaneous flow rate Q may be ex-

pressed as the sum of their mean values, H0 and Q0, and their oscillations around

the mean, h∗ and q∗, as shown in Fig. 3.2 (Chaudhry, 1970). By substituting these

into Eqs. 3.1 and 3.2, the following linear equations are obtained

∂q∗

∂x
+ gA

a2
∂h∗

∂t
= 0 (3.3)

∂h∗

∂x
+ 1
gA

∂q∗

∂t
+Rq∗ = 0 (3.4)

where, R = fQ0/gDA
2 is a linearized resistance term for the turbulent flow. Elimi-
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Figure 3.2 Instantaneous and mean discharge. Taken from Chaudhry (1970)

nation of h∗ from the previous two equations yields

∂2q∗

∂x2 −
1
a2
∂2q∗

∂t2
− gAR

a2
∂q∗

∂t
= 0 (3.5)

Pressure head and discharge oscillations are assumed to be sinusoidal in time, i.e.,

h∗ = Re [h(x)ejωt] and q∗ = Re [q(x)ejωt], where ω is the angular frequency in radians

per second, j =
√
−1, h and q are complex variables and are functions of x only, and

Re[ ] stands for the real part.

Substituting these sinusoidal terms into Eq. 3.5, the field matrix, Fi, of the ith

pipe may be obtained which is then used to derive blockage detection equations, as

discussed in the following section.

Blockage Detection Equations

A partial blockage can be modeled as a partially open, in-line valve with a constant

opening. The size of the partial blockage is characterized by the ratio of the pipe

diameter at the blockage location to that of the healthy pipeline. The overall extended

transfer matrix, U , is obtained by an ordered multiplication of individual extended

17



www.manaraa.com

field and point matrices and is considered to be characteristics of the piping system.

As the partial blockage divides the pipe into two segments, the overall extended

transfer matrix, U , for a reservoir-pipe-valve system may be expressed as (Chaudhry,

2014):

U =


u11 u12 u13

u21 u22 u23

u31 u32 u33

 = F2 P2 F1 (3.6)

where u11, u12, · · · are elements of the overall transfer matrix; F1 and F2 refer to

the field matrices of the pipe to the left and to the right of the partial blockage,

respectively, and P2 refers to the point matrix for the partial blockage.

The elements of the overall extended transfer matrix depend on the mode of

oscillation of the downstream valve. For instance, u11 and u12 for a valve oscillating at

the 1st (fundamental) harmonic
(
ω = ωTH = πa

2L

)
may be expressed as (see Appendix

A)

u11 = 2∆H0

CQ0
cos2

(
π

2Lr
)
j (3.7)

u21 = −∆H0

Q0
sin (πLr)− C j (3.8)

where Lr is the relative blockage location (blockage location measured from the up-

stream reservoir, Lb, divided by the pipe length, L); ∆H0 is the steady state head

loss due to the blockage, and C = a/(gA) is the pipe characteristic impedance.

Utilizing the extended point matrix and the boundary conditions at the valve

hLn+1 = u21 q
R
1 + u23 (3.9)

where qR1 is the discharge just to the right of the reservoir (i.e., at the first node of the

pipe) and hLn+1 is the oscillating pressure head to the left of the valve (i.e., at the last

node of the pipe) as shown in Fig. 3.1, qR1 and hLn+1 can be expanded as (Chaudhry,

2014)
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qR1 = −
u23 −

2H0

Q0
u13 + 2H0k

τ0
u33

u21 −
2H0

Q0
u11 + 2H0k

τ0
u31

(3.10)

hLn+1 =

2H0k

τ0
2H0

Q0

u11

u21
− 1

(3.11)

where τ0 is the initial relative valve opening and k is the amplitude of the sinusoidal

valve opening and closing.

Substituting u11 and u21 from Eqs. 3.7 and 3.8 into Eq. 3.11 gives

hLn+1,1 =

2H0k

τ0

4H0

Q0

∆H0
CQ0

cos2
(
π
2 (Lr)

)
j

−∆H0
Q0

sin (πLr)− Cj
− 1

(3.12)

Using the same procedure, similar equations can be obtained for a valve oscillating

under the 2nd, 3rd, and 4th harmonics as follows:

hLn+1,2 =

2H0k

τ0

2H0

Q0

−1 + ∆H0
CQ0

sin (2π (Lr)) j
2∆H0
Q0

cos2 (π (Lr))
− 1

(3.13)

hLn+1,3 =

2H0k

τ0

4H0

Q0

−∆H0
CQ0

cos2
(

3π
2 (Lr)

)
j

∆H0
Q0

sin (3π (Lr)) + Cj
− 1

(3.14)

hLn+1,4 =

2H0k

τ0

2H0

Q0

1− ∆H0
CQ0

sin (4π (Lr)) j
−2∆H0

Q0
cos2 (2π (Lr))

− 1
(3.15)

Each of the four equations (Eqs. 3.12 through 3.15) gives, for each value of Lr, a

complex number the absolute value of which represents the amplitude of the pressure

head oscillations. The latter can be normalized using the mean pressure head, H0,

to compute the relative amplitude of the pressure head oscillation, hr =
∣∣∣hLn+1

∣∣∣ /H0.

The relationship between Lr and hr for the first four harmonics is used to construct
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each corresponding blockage detection curve, as discussed below.

Blockage Detection Curves

A blockage detection curve (BDC) obtained by a sinusoidal motion of a down-

stream valve at a specified harmonic represents the relationship between the relative

blockage location, Lr (on the x-axis) and the relative amplitude of the pressure head

oscillation at the downstream end of the pipeline, hr (on the y-axis) as shown in Fig.

3.3. These curves depend on the system parameters (pipeline length, material, fric-

tion, etc.) and can be used to detect a possible blockage location along the pipeline.

To construct a blockage detection curve, a relative spatial interval is first selected be-

tween 0 and 1 and the coordinates of each detection curve are calculated using Eqs.

3.12 to 3.15. Each relative blockage location gives a complex number, the absolute

value of which represents the amplitude of the pressure head oscillation. As shown in

Fig. 3.3, the number of the inflection points (points where the 2nd derivative is zero)

on each curve increases with the increase in the number of harmonics. Therefore, the

1st harmonic curve gives one possible blockage location for each value of hr, while the

2nd harmonic curve gives two possible blockage locations except when the blockage is

at the mid-length of the pipeline (Lr=1/2), to which one possible blockage location

is obtained. This is because of the symmetry feature of the 2nd harmonic BDC. For

the 3rd harmonic curve, there are three possible blockage locations except when Lr =

0, 1/3, 2/3, or 1 where two possible blockage locations are obtained. Lastly, for 4th

harmonic curve, there are four possible blockage locations except when Lr = 0, 1/2

or 1 where three possible blockage locations are obtained and when Lr = 1/4 or

3/4 where two possible blockage locations are obtained. However, there is only one

shared value for the possible blockage location among all the four BDCs which gives

the anticipated blockage location. Even though the 1st harmonic BDC is sufficient
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to determine the blockage location, the use of additional BDCs is recommended for

reconfirmation. The more the number of BDCs used, the more is the accuracy of

the blockage location. However, the current approach uses up to the 4th harmonic to

avoid the problems of using higher harmonics, as discussed in the Introduction.

3.3 Numerical Application

An examination of the blockage detection equations (Eqs. 3.12 to 3.15) shows

that there is a direct relationship between the relative blockage location, Lr, and

the absolute value of the pressure head oscillation at the valve,
∣∣∣hLn+1

∣∣∣. As discussed

earlier, the latter term may be represented in the normalized form hr =
∣∣∣hLn+1

∣∣∣ /H0

and the relationship between Lr and hr is used to construct the blockage detection

curves for different system parameters.

Figure 3.3 shows the relationship between hr and Lr for the pipeline system shown

in Fig. 3.1 excited at the first four harmonics of the pipeline. Relative amplitude of

the pressure head oscillations, hr, for the 1st and 3rd (odd) harmonics are shown on

the y-axis to the left and for 2nd and 4th (even) harmonics are shown on the y-axis to

the right. The system is considered frictionless for now with a 65% blocked diameter

(dr = 0.35, where dr is the ratio of the pipeline diameter at the blockage location to

that of the healthy pipeline). Other blockage sizes and friction effect on the model

output are considered later. The pipe length and diameter are 1600 m and 0.3 m,

respectively. The initial steady state discharge is 0.1 m3/s and the height of water in

the reservoir is 50 m. Wave speed, a, is 1000 m/s, initial relative valve opening, τ0,

is 0.9, and the amplitude of the valve oscillations, k, is 0.1.

For the case of 1st harmonic (fundamental frequency) shown in Fig. 3.3, there

is only one possible blockage location for each value of the relative amplitude of the

pressure head oscillation in the pipeline system. From Eq. 3.12 or by using the curve
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Figure 3.3 Blockage detection curves for the first four harmonics.

of the 1st harmonic in Fig. 3.3, as the partial blockage is moved from the upstream

reservoir to the downstream valve (i.e., Lr = 0 to 1), the relative amplitude of the

pressure head oscillation, hr, increases gradually from 0.128 to 0.142 or the pressure

head increases gradually from 6.4 m to 7.1 m.

For the case of 2nd harmonic, using Eq. 3.13 or the curve of the 2nd harmonic in

Fig. 3.3, the amplitude of the pressure head oscillation approaches 0 as the blockage

location approaches the pipe mid-length (i.e., Lr = 0.5). For a partial blockage away

from the pipe mid-length towards the upstream reservoir or towards the downstream

valve, hr increases gradually until it reaches a maximum value at the boundary de-

pending on the size of the partial blockage (0.051 in this example). The curve is

symmetrical around the pipe mid-length , i.e., for each value of hr there are two
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possible blockage locations except for the pipe mid-length. This symmetry is also

reported by many researchers who used the traditional FRDs (Sattar et al., 2008;

Wang et al., 2005; Covas et al., 2005; Lee et al., 2005b). One of the two possible

locations is on the reservoir side of the pipe mid-length and the other is on the valve

side.
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Figure 3.4 Relative amplitude of the pressure head oscillation at first and third
harmonics vs. blockage location.

For the case of 3rd and 4th harmonics, there are multiple possible blockage lo-

cations for each value of hr, as discussed earlier. One of these possible locations in

each harmonic is the same as that obtained from the first harmonic. However, it is

not recommended to use only the 1st harmonic BDC for the reasons discussed in the

previous section. For field applications, a combination of the first four harmonics is

recommended. One of these combinations is to use the ratio of the amplitude of the

pressure head oscillation obtained by oscillating the valve at the 1st harmonic to that

23



www.manaraa.com

obtained by oscillating the valve at the 3rd harmonic. This ratio is shown in Fig. 3.4

and may be used to determine whether there is a blockage on the reservoir or on the

valve side of the pipe mid-length. Region (L) in Fig. 3.4 corresponds to a blockage on

the reservoir side of the pipe mid-length, while region (R) corresponds to a blockage

on the valve side.

As an example of a blocked pipeline with the above specified parameters, any

value of hr within the range (0.128 to 0.142) may be obtained in a field application

depending on an unknown blockage location with the valve oscillating at the first

harmonic. Once the value of hr is obtained, the relationship between hr and Lr (1st

harmonic curve in Fig. 3.3) may be used to locate the partial blockage. An hr value

of 0.132 for example corresponds to Lr of 0.35. Multiplying the latter value by the full

length of the pipeline gives a partial blockage location of 560 m from the upstream

reservoir. Using Eqs. 3.12 through 3.15 or their corresponding curves in Fig. 3.3, the

values in Table 3.1 corresponding to the downstream valve oscillating at the 2nd, 3rd,

and 4th harmonics may be determined.

As shown in Table 3.1, there is only one shared location of partial blockage among

all the four cases of the modes of oscillation of the downstream valve and this is the

anticipated partial blockage location. Furthermore, the ratio between the relative

amplitude of the pressure head oscillation resulting from oscillating the valve at the

1st harmonic and that resulting from oscillating the valve at the 3rd harmonic may

be utilized to determine the part of the pipeline where the partial blockage exists.

From Fig.3.4, as this ratio equals 0.927 (which is less than 1), the partial blockage

lies in the reservoir side of the pipe mid-length. Potential field application to detect

a partial blockage location using the current approach is discussed later.
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Table 3.1 Relative amplitude of pressure head oscillation at the downstream
end of the pipeline and the corresponding blockage location for different
harmonics.

Harmonic Relative pressure Possible relative Actual Possible
head oscillation blockage location pressure head blockage
amplitude (hr) (Lr) oscillation, m location, m

1st 0.1320 0.350 6.60 560

2nd 0.0145 0.350 0.73 560
0.650 1040

3rd 0.1424
0.320

7.12
512

0.350 560
0.985 1576

4th 0.0235

0.150

1.18

240
0.350 560
0.650 1040
0.850 1360

Effect of Blockage Size

Generally, a partial blockage in a pipeline decreases the amplitude of the pressure

head oscillations at the downstream valve at the odd harmonics and increases it at

the even harmonics (Mohapatra et al., 2006; Lee et al., 2008; Sattar et al., 2008).

Furthermore, the amount of decrease or increase depends on the size of the partial

blockage and its location. However, this conclusion is investigated only for a small

number of blockage locations in the available literature. In this study, the effect of the

partial blockage size on the amplitude of the pressure head oscillation is investigated

for all possible blockage locations along the pipeline.

The effect of the blockage size on the relationship between Lr and hr for three

different relative blockage sizes, dr = 0.45, 0.50 and 0.55, in a frictionless system is

considered first. Other sizes along with the friction effect are considered later. A

higher value of dr represents a smaller blockage size, and vice versa. The relationship
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between Lr and hr for different blockage sizes for the 1st and 3rd (odd) harmonics is

shown in Fig. 3.5. From this figure, it is clear that, as the blockage size increases

(dr decreases), the relative amplitude of the pressure head oscillation decreases for

all possible blockage locations. In addition, the 1st harmonic blockage detection

curve intersects the 3rd harmonic curve at three locations: upstream end (Lr = 0),

mid-length (Lr = 0.5), and downstream end (Lr = 1) of the pipeline. At the point

of intersection, the relative amplitude of the pressure head oscillation is the same

whether the downstream valve is oscillated at the 1st or 3rd harmonic. The location

of the point of intersection and its relation with the steady and unsteady friction is

discussed in "Effect of Friction".

The relationship between Lr and hr for different blockage sizes for the 2nd and

4th (even) harmonics is seen in Fig. 3.6. From this figure, it is shown that the

three curves for different blockage sizes intersect at the pipe mid-length in the case

of the 2nd harmonic. At the point of intersection, a pressure head oscillation node in

which the amplitude of the pressure head oscillation is independent on the blockage

size is produced. This may be verified from Eq. 3.13 for Lr = 0.5, where the term

cos2 (πLr) equals zero, which makes the amplitude of the pressure head oscillation

equal zero regardless of the partial blockage size. For the 4th harmonic, the three

curves intersect at two locations (Lr = 1/4 and Lr = 3/4) producing two pressure

head oscillation nodes in term of the blockage size. For locations other than the

pressure head oscillation nodes, it is shown that the larger the blockage size, the

larger the amplitude of the pressure head oscillations.

Blockage sizes other than the three considered above at different relative blockage

locations, as shown in Fig. 3.7 are investigated. Three relative blockage locations are

considered: Lr = 0.25, 0.5, and 0.75, with the downstream valve oscillating at the

first harmonic (ωr = 1) as an example. For all these three locations, the amplitude

of the pressure head oscillation increases as the blockage size decreases (i.e., dr in-
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Figure 3.5 Blockage detection curves for first and third harmonics with different
blockage sizes.

creases). However, the rate of change of the amplitude of the pressure head oscillation

decreases as the blockage size decreases and becomes insignificant as the blockage size

approaches the minimum value (i.e, dr approaches the maximum value of 1). This

trend agrees with that reported by Mohapatra et al. (2006) for one selected blockage

location at a wide range of harmonics (up to ωr = 100).

Effect of Friction

Steady and unsteady friction effects on the amplitude of the pressure head os-

cillations and the interaction among blockage detection curves is discussed in this

section. Steady friction effect is first discussed by considering different values of

Darcy-Weisbach friction factor, f , as shown in Fig. 3.8. In this figure, the upper two
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Figure 3.6 Blockage detection curves for second and fourth harmonics with
different blockage sizes.

curves represent the relationship between Lr and hr for the 1st and 3rd harmonics for

a frictionless system (f = 0), while the lower four curves represent this relationship

for a system with f = 0.01 and f = 0.02, respectively.

It is clear that, as the steady friction losses increase, the amplitude of the pressure

head oscillation decreases for all partial blockage locations for both 1st and 3rd (odd)

harmonics. Also the range of the relative amplitude of the pressure head oscillations

(the difference between hr at Lr = 0 and hr at Lr = 1) decreases as the steady friction

losses increase. That means that in the case of 1st and 3rd harmonics, steady friction

losses reduce the amplitude of the pressure head oscillations. For the case of 2nd and

4th harmonics, although it is not presented here to conserve space, the amplitude

of the pressure head oscillations is proportional to the steady friction losses, i.e.,hr
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Figure 3.7 Relative amplitude of the pressure head oscillations vs. relative
blockage size at 1st harmonic with different relative blockage locations.

increases as f increases.

As mentioned earlier, the 1st harmonic curve for a frictionless system intersects

the 3rd harmonic curve at three locations, Lr = 0, 0.5, and 1. However, this is not

the case if friction is included and the intersection points at Lr = 0 and Lr = 0.5 are

shifted, and there is no intersection at Lr = 1. In addition, there are different relative

pressure head oscillations for each harmonic at these three locations, i.e., Lr = 0, 0.5,

and 1, as explained below:

1. Point ao in inset a of Fig. 3.8 becomes two points, a1 and a2 (inset d), and

there is a new point of intersection at a3, slightly away and to the right of the

upstream reservoir.

2. Point bo in inset b of Fig. 3.8 becomes two points, b1 and b2 (inset e), and there
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is a new point of intersection at b3, slightly away and to the left of the pipeline

mid-length.

3. Point co in inset c of Fig. 3.8 becomes two points, c1 and c2 (inset f), and there

is no intersection between the two curves (the 3rd harmonic curve being below

the 1st harmonic curve and any downward shift keeps the two curves apart).

The difference in the amplitude of the pressure head oscillations between a1 and

a2 is not equal to that between b1 and b2 nor to that between c1 and c2, but the mag-

nitude of each of these three differences increases as the steady friction loss increases,

as shown in insets g, h, and i where the steady friction factor is increased from 0.01

to 0.02. The expansion of the intersection points is because that the shift in each

detection curve due to the inclusion of the steady friction depends on the mode of

oscillation of the downstream valve. In other words, as the BDCs shift downward due

to the inclusion of the steady friction losses, the downward shift of the 3rd harmonic

curve is slightly greater than that of the 1st harmonic curve since the effect prompted

by the steady friction on the amplitude of the pressure head oscillation is greater in

the case of the 3rd harmonic than that in the case of the 1st harmonic. The phys-

ical reasoning for such a trend is that the inclusion of the steady friction decreases

the excitation response of the system depending on the mode of the downstream

valve oscillation and hence leads to a decrease in the amplitude of the pressure head

oscillation.

The differential shift between the 1st and 3rd harmonic BDCs due to the inclusion

of the steady friction also affects the ratio between the corresponding hr values used to

determine the part of the pipeline in which the partial blockage exists. As discussed

earlier, this ratio is less than 1 if the blockage exists in the reservoir side of the pipeline

for a frictionless system. However, for a frictional system, there will be two regions

of the reservoir side in which this ratio is greater than 1, questioning the possibility
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h r

Lr

Figure 3.8 Comparison of the first and third harmonic leak detection curves for a
system with and without friction with only steady friction included. Insets a
through i are enlargements of the interaction points.
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of the blockage existence on this side. One of these two regions is in the upstream

boundary and the other is just to the left of the mid-length of the pipeline. The

extent of these two regions and how much the above mentioned ratio is greater than

1 depend on the amount of the steady friction.

In the steady-oscillatory flow, the unsteady friction is also harmonic dependent

(Wang et al., 2005; Sattar et al., 2008) where its effect on the amplitude of the pres-

sure head oscillation increases at higher harmonics. However, the current approach

analyzes the variation of the amplitude of the pressure head oscillation for different

blockage locations using one harmonic at a time for the first four harmonics. The

model of Vitkovsky et al. (2003) for steady-oscillatory flow is used to investigate

the effect of unsteady friction on the BDCs proposed in this study. This model sug-

gests adding a component of 2jω
gA

(
1
C∗ + jωD2

4ν

)−1/2
(in which the shear decay coefficient,

C∗ = 7.41/Re
k, Re is the Reynold’s number, ν is the kinematic viscosity of water, and

k = log10(14.3/Re
0.05)) to the steady friction component to account for unsteady fric-

tion effect. The BDCs are reconstructed for two cases: first with only steady friction

(f = 0.02) and second with both steady and unsteady friction, as shown in Fig. 3.9.

From this figure, it is clear that the unsteady friction effect on the BDCs is similar

to that prompted by steady friction, while it increases hr values at even harmonics

(bottom and right axes of Fig. 3.9), it decreases hr values at odd harmonics (bottom

and left axes of Fig. 3.9), for all possible blockage locations. However, its effect at

1st and 3rd (odd) harmonics is smaller than that at 2nd and 4th (even) harmonics

and it is the greatest when the blockage is located at the points of minimum relative

pressure head oscillations of the even harmonic BDCs. Furthermore, the shift of the

intersection points between 1st and 3rd harmonic curves when the unsteady friction is

included is greater than that in the case if only steady friction is included, as shown

in Fig. 3.10. This behavior further affects using the ratio between the corresponding

hr values to determine the part of the pipeline in which the partial blockage exists,
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as discussed earlier.
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Figure 3.9 Comparison of BDCs with and without unsteady friction (f=0.02)
(a,b,c, and d unsteady friction is not included; a’,b’,c’, and d’ unsteady friction is
included).

3.4 Model Verification

The outputs of the current approach which uses the transfer matrix method

(TMM) in the frequency domain to calculate the amplitude of the pressure head

oscillations at the downstream end of a pipeline is compared with that obtained by

the method of characteristics (MOC) and with the experimental data available in the

literature, as discussed in the following paragraphs.
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Figure 3.10 Blockage detection curves for 1st and 3rd harmonics, steady and
unsteady friction included.
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Method of Characteristics

In the method of characteristics, the relationship between time and relative valve

opening is first specified for different harmonics of the sinusoidal opening and closing

of the valve and simulated as a boundary condition at the downstream end of the

pipeline. The relative valve opening, τ , is sinusoidal in time, i.e., τ=τ0+k sin(ω

t), in which τ0 is the mean valve opening, k is the amplitude of the relative valve

opening, and ω is the frequency of the oscillating valve. The partial blockage is also

identified as an internal boundary condition and located at different locations along

the pipeline at 50 m spacing in this study. To ensure that the steady-oscillatory flow

has been established, 2800 time steps are considered and the minimum-maximum

pressure head difference is taken for the last 400 time steps. All parameters are

kept exactly the same as that used in the frequency domain and no noise in the

signal is observed. Sample pressure head responses to the 2nd harmonic excitation

for three different blockage locations are shown in Fig. 3.11. The relative amplitude

of the pressure head oscillation, hr, is determined as ∆HLr/2H0, where ∆HLr is the

maximum-minimum pressure head difference for each corresponding relative blockage

location and H0 is the height of water in the upstream reservoir above the datum.

The process continues for other harmonics of the downstream valve oscillating

sinusoidally and for all possible blockage locations. The difference between the rel-

ative amplitude of the pressure head oscillations calculated by the MOC and that

calculated by the TMM for all possible blockage locations is shown in Fig. 3.12.

According to this figure, the amplitude of the pressure head oscillations calculated

by the TMM are slightly overestimated as compared to those obtained by the MOC

for the 1st and 3rd (odd) harmonics and for all possible blockage locations (Lr = 0 to

1). This overestimation may be attributed to the linearity assumption in the TMM

solution and it has also been reported by Mohapatra et al. (2006) for a wide range of

odd harmonics (ωr = 0 to 25) for one selected blockage location. However, there is
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almost full agreement between the two methods for the 2nd and 4th (even) harmonics.
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Figure 3.11 Pressure head oscillations of the downstream valve sinusoidal
movement at 2nd harmonic for different blockage locations.

Experimental Data

Sattar et al. (2008), in their experimental setup, measured the frequency response

of a short pipe and reported the relative amplitudes of the pressure head oscillation

corresponding to a set of relative even harmonics up to the 6th harmonic. The system

they investigated is similar to that considered in the current study consisting of a

constant-level reservoir in the upstream and a sinusoidally oscillating downstream

valve. An 80% blockage is placed at the mid-length of a 160 m long copper pipe

with 0.0254 m internal diameter. Wave speed and initial steady state discharge are

1000 m/s and 0.000284 m3/s, respectively. The experimental data points are shown
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at the bottom and left axes of Fig. 3.13 (a or b). In this figure, ∆ωeven
r represents the

oscillation period of the even harmonics of the blockage induced pattern estimated

from the experimental data points. Using this period, the relative blockage location

(Lr = Lb/L) is estimated as 2/∆ωeven
r = 0.5 (Sattar et al., 2008). In order to compare

this relative blockage location to that estimated by the current approach, two sample

BDCs are developed for a similar system. Since there is no data points for the odd

harmonics, the 2nd and 4th (even) harmonics BDCs are used as shown on the top and

right axes of Fig. 3.13 (a and b).

Fig. 3.13(a) shows the comparison with the 2nd harmonic BDC, while Fig. 3.13(b)

shows the comparison with the 4th harmonic BDC. In Fig. 3.13(a), the measured

relative amplitude of the pressure head oscillation at the 2nd harmonic is projected

horizontally on the 2nd harmonic BDC, then the intersection points are projected ver-

tically to find two anticipated relative blockage locations (Lr=0.47 and 0.53) while

four anticipated relative blockage locations (Lr=0.035, 0.47, 0.535, and 0.965) are

obtained in Fig. 3.13(b) by projecting the measured relative amplitude of the pres-

sure head oscillation at the 4th harmonic. However, two values of Lr obtained from

the two BDCs are almost the same, suggesting two anticipated relative blockage lo-

cations of 0.47 and 0.53. Either of these two values gives a good approximation for

the actual relative blockage location of 0.5 with a 95% agreement. The 5% difference

between the actual and calculated relative blockage locations may be attributed to

the uncertainty in the experimental estimation of the system parameters.

3.5 Potential for Field Applications

The blockage detection technique presented in this study may be used in real-life

applications for which the model parameters should be verified by a prototype test for

the healthy system. The steady-state hydraulic grade line is then computed with all
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Figure 3.12 Comparison of the blockage detection curves obtained by using
method of characteristics and transfer matrix method.

major and minor head losses, including the head loss caused by the partial blockage.

The latter may be related to the blockage size and thus the value of dr is determined.

The flow in the pipeline is then excited by oscillating the downstream valve at the 1st

harmonic and the relative amplitude of the pressure head oscillation is determined.

The amplitude of the pressure head oscillation may be averaged over three to five

runs for further accuracy. The relationship between the computed relative amplitude

of the pressure head oscillation and the relative blockage location is used to estimate

the blockage location. The above procedure is repeated with the valve oscillated at

the 2nd, 3rd, and 4th harmonics and the relationship corresponding to each harmonic

is used to estimate the possible blockage location. There is one shared value of the

relative blockage location among the four modes of oscillation of the downstream

valve. This value may differ slightly in each mode of oscillation due to the accuracy
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Figure 3.13 Comparison of experimentally measured and theoretically computed
relative blockage locations.
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of measurements but this difference should be small and that makes it easier to de-

termine the blockage location. However, there are a number of uncertainties that

need to be taken in consideration. The current model may be used to develop similar

detection curves for other pipeline abnormalities, such as leaks.
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Chapter 4

Blockage Detection in Pipes by Continuous

Emission of Acoustic Signal

4.1 Introduction

Most of the available partial blockage detection techniques involve steps that interfere

with the liquid flow and require perforation of the pipe-wall to install the pressure

sensors in direct contact with the flowing liquid. In contrast, the approach presented

in this chapter utilizes only the interaction between the partial blockage and the

steady flow where the blockage emits continuous acoustic signals that can be used

for the blockage detection. The emitted signal is produced at the source in the form

of a short pulse of elastic and kinetic energy that travels within the pipe-wall and

may be detected by sensitive externally-mounted acoustic sensors. A set of detection

sensors is used at a pre-defined spacing and moved along the pipe-wall in a suitable

tripping distance. The relationship between accumulated signal strength and sensor

location is plotted on a curve which shows a hump close to the blockage location.

The height of this hump is proportional to the blockage size. Numerical calculations

of the turbulence kinetic energy at sensor locations also show a spike of turbulence

kinetic energy corresponding to the experimentally recorded hump.
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4.2 Acoustic Sensor Selection

Acoustic emission (AE) is defined as the elastic wave produced by the rapid release

of energy and may be recorded by acoustic sensors. There are many types of acous-

tic sensors that manufactured by different companies. Different sensors are tested

to check their suitability to the current application, and an integral preamplifier

sensor (R6I-AST) of Mistras-Physical Acoustic Corporation is adopted (Fig. 4.1).

This sensor is specifically engineered for high sensitivity (117dB, Ref V/m/s) and

incorporates low-noise input (<3 µV -RMS RTI). The resonant frequency, operating

frequency range and temperature range are 55 kHz (Ref V/m/s), 40 to 100 kHz and

-35 to 75 ◦C, respectively. Due to its high sensitivity and low resonant frequency, this

sensor can be used for applications that involve metal structures, including pipelines.

Figure 4.1 AE Sensor.

4.3 Experimental Setup

The acoustic emission test is conducted on a short pipe of 0.0254 m diameter

in the Hydraulic Engineering Laboratory of the University of South Carolina. The

piping system consists of an upstream reservoir feeding water to a copper pipe which

discharges to the atmosphere. The length of the primary zone of the pipe that inves-
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tigated for blockage existence is 7.2 m. Seven acoustic sensors are installed on the

upper side of the pipe at 1.2 m spacing, starting from the leading edge of the primary

zone (Fig. 4.2). Water flow is initiated in the intact pipe first and the acoustic signal

is recorded 900 seconds later to ensure that the steady state flow condition is achieved.

The emitted signal is recorded for a duration of 80 seconds. The recording duration

may be extended for any desired period taking in consideration the amount of data

to be analyzed. This time, however, should be sufficient to ensure that no vibrational

ambient events are interfering with the recorded signal and to provide enough data

record for comparison purposes. The flow is then shut-off and a piece of 0.3048 m

long pipe is cut from the pipeline to make the blockage arrangement. Two pieces of

the same length are made in advance with two central blockages in such a way that

the pipe diameter is reduced by 40% and 60%, respectively. The appropriate fittings

are attached for a controlled connection of zero leak and smooth internal water flow.

However, to investigate the fittings interaction with the acoustic emission measure-

ments, an intact piece with no blockage is attached first to the pipe and the acoustic

signal is recorded under the steady flow conditions (no diameter reduction but only

the fittings are attached to the pipe). Thereafter, the experiment is repeated two

more times, one with the 40% diameter reduction and the other with 60% diameter

reduction. The acoustic signal is recorded for each case: the intact pipe, the pipe

with only the fittings attached, the pipe with a 40% diameter reduction, and the pipe

with a 60% diameter reduction, all under the steady state flow conditions.

4.4 Experimental Results and Discussion

The accumulated signal strength (in picovolt.second, pV.s) is plotted for the four

cases mentioned in the previous section. Figure 4.3 shows this plot for the intact

pipe. It is noticed from this figure that the rise of the accumulated signal strength
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Figure 4.2 Primary Pipe Zone (not to scale).

over time curve increases in the flow direction along the primary length of the pipeline

(from sensor S-1 to sensor S-7). However, this increase is very small as compared to

that in the case of a blocked pipe where all the curves of the intact pipe signal coa-

lesce to one horizontal line when they are plotted with those of the blocked pipe on

the same vertical scale. Figure 4.4 shows the plot of the accumulated signal strength

over time for the case with only the fittings attached. It is noticed that the trend of

the curve is similar to that of the intact pipe and that the rise of the curve for the

case of the pipe with only the fittings attached is insignificant in comparison to that

in the case of a blocked pipe, as discussed later.

Figures 4.5 and 4.6 show the accumulated signal strength over time for the par-

tially blocked pipe with 40% diameter reduction. The trend of the accumulated

signal strength over time is represented by two separate figures because the rise of

the accumulated signal strength over time curve shows two different behaviors, as it

approaches or departs the blockage location. Figure 4.5 shows the accumulated signal

strength over time at sensors S-1, S-2, and S-3. In this figure, the rise of the accu-

mulated signal strength over time curve increases as the sensor location approaches

the blockage location in the flow direction. While in Fig. 4.6, which shows the accu-

mulated signal strength over time curve for sensors S-4, S-5, S-6, and S-7, the rise of
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the curve decreases as the sensor location departs farther of the blockage location in

the flow direction. The maximum rise occurs in the vicinity of the blockage location

(sensor S-3 location). However, for the 60% diameter reduction (larger blockage size),

the trend is similar but with higher rise of the curve in the vicinity of the blockage

location, as shown in Figs. 4.7 and 4.8. This trend provides information that can be

used to detect the blockage location, as discussed in the following section.
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Figure 4.3 Accumulated signal strength over time for an intact pipe.

Final Accumulated Signal Strength

The final accumulated signal strength is the accumulated signal strength from the

signal record initialization to the end of the recording duration. As explained pre-

viously, the recording duration is taken as 80 seconds in the current study. The

final accumulated signal strength is determined for each sensor location and the re-

lationship between these two parameters is plotted, as shown in Fig. 4.9. In this
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Figure 4.4 Accumulated signal strength over time for a pipe with fittings.

figure, the x-axis represents the sensor location with respect to the blockage location

(zero-coordinate), and y-axis represents the final accumulated signal strength. The

lower curve in Fig. 4.9 shows the plot for an intact pipe, while the upper two curves

show the plot for a pipe with 40% diameter reduction and 60% diameter reduction,

respectively. From this figure, it is noted that the plot of the relationship between

the final accumulated signal strength and the sensor location represents a horizontal

straight line for the intact pipe, while it shows a hump in the vicinity of the blockage

location (sensor S-3 location) for the other two partial blockage cases. In addition,

the height of the hump is proportional to the percent of the reduction in the pipe

diameter, where it is lower in the case of the pipe with 40% diameter reduction than

that in the case of 60% diameter reduction. The effect of fittings is insignificant in

comparison to the partial blockage cases and hence their effect is no more considered

in the following discussions.
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Figure 4.5 Accumulated signal strength over time for a pipe with 40% diameter
reduction at sensors S-1, S-2, and S-3.

Final Accumulated Acoustic Emission Energy

In the Acoustic Emission (AE) terminology used in this study, AE energy repre-

sents the rectified voltage signal over duration of the AE hit, hence with units of

voltage-time. It has a similar definition as the signal strength with a difference in the

sensitivity, size, and dynamic range. This parameter is used for comparison purposes

and verification with the calculated flow turbulence kinetic energy, as discussed in

the following section.

Similar to the definition of final accumulated signal strength, the final accumulated

AE energy may be defined as the accumulated AE energy to the end of the recording

duration (80 seconds in the current study). Its maximum value for each partially

blocked pipe occurs in the vicinity of the blockage location (sensor S-3 location).
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Figure 4.6 Accumulated signal strength over time for a pipe with 40% diameter
reduction at sensors S-4, S-5, S-6, and S7.

This maximum value is used to normalize the final accumulated AE energy obtained

for each pipe condition at all other sensor locations and the normalized value is called

the relative final accumulated AE energy. The behavior of the curves representing

the relationship between the sensor location and the final accumulated AE energy is

similar to that between the sensor location and the final accumulated signal strength.

This relationship is represented by a horizontal straight line for an intact pipe, while

there is a hump in the vicinity of the blockage location for a partially blocked pipe.

The plot of the relative final accumulated AE energy versus sensor location is veri-

fied by the numerical simulation of the flow field in the primary zone of the pipe, as

discussed in the following section.
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Figure 4.7 Accumulated signal strength over time for a pipe with 60% diameter
reduction at sensors S-1, S-2, and S-3.

4.5 Theoretical Verification

The blockage location corresponds to the hump on the curve of the relationship be-

tween the relative final accumulated AE energy and the sensor location and is theoret-

ically verified by numerical simulation. The numerical simulation includes analysing

the flow characteristics and plotting the velocity profiles at selected sensor locations.

In addition, it includes calculations of the relative turbulence kinetic energy of flow

and comparing it to the relative final accumulated AE energy. Other parameters

representing the flow characteristics are also calculated, as discussed in the following

sub-section.
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Figure 4.8 Accumulated signal strength over time for a pipe with 60% diameter
reduction at sensors S-4, S-5, S-6, and S7.

Numerical Simulation

The flow domain along the primary zone of the pipe is analyzed by solving the three

dimensional Reynolds-averaged Navier-Stokes equations using Fluent, a commercial

CFD package within the Ansys software. The three dimensional model is used to

calculate the parameters of interest at different locations of the pipe including the

upper wall on which the acoustic sensors are attached. The parameters of interest

include eddy viscosity, turbulent eddy dissipation, and turbulence kinetic energy.

Governing Equations

The Reynolds-averaged conservation equations for mass and momentum may be writ-

ten as (Ferziger and Peric, 2012):
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Figure 4.9 Final accumulated signal strength vs. sensor location.

∂ūi
∂xi

= 0 (4.1)

∂ρūi
∂t

+ ∂ρūiuj
∂xj

= − ∂p̄

∂xi
+ ∂

∂xi
[µ(∂ūi

∂xj
+ ∂ūj
∂xi

)] + ∂τij
∂xj

(4.2)

where ūi and ūj are Reynolds-averaged velocity, xi and xj are Cartesian coordinate

axes, ρ is the fluid density, p̄ is the pressure, t is the time, and µ is the molecular

viscosity. The term τij = −ρ(uiuj − ūiūj) is the Reynolds stress.

Flow Turbulence Kinetic Energy Model

The eddy-viscosity model in the Reynolds-averaged approach used by the FLU-

ENT package of Ansys software to solve Navier-stokes equations may be expressed

as (Ferziger and Peric, 2012):

τij = −ρúiúj = µt

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
− 2

3ρkδij (4.3)
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in which k is the turbulence kinetic energy.

In the current study, a bounded second-order central difference scheme is used to

solve the governing equations. The k−ε model is used for turbulence closure utilizing

two transport equations, as follows:

For turbulence kinetic energy

∂(ρk)
∂t

+ ∂ (ρujk)
∂xj

= ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xj

]
−Gp − ρε (4.4)

in which, the eddy viscosity µt = Cµρk2

ε
, Cµ=0.09, and Gp is the turbulence generated

due to the gradient of the mean flow velocity, which is defined as

Gp = −ρúiúj
∂ui
∂xj

= ρνt

(
∂ui
∂xj

+ ∂uj
∂xi

)
∂ui
∂xj

(4.5)

where νt is the kinematic eddy viscosity.

For turbulence eddy dissipation

∂(ρε)
∂t

+ ∂ (ρujε)
∂xj

= ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xj

]
+ Cε1

ε

k
Gp − Cε2ρ

ε2

k
(4.6)

where the values of Cε1, Cε2, σk, and σε are 1.44, 1.92, 1.0, and 1.3, respectively.

Flow Field General Description

A numerical experiment is performed for a blocked pipe in which the actual pipe

diameter is magnified 3 times to provide a clearly captured flow field for discussion

purposes. The full-scale pipe parameters are retained in the later calculations used

to verify the experimental observations. A partial blockage is added in the pipe by

reducing the pipe diameter to the half in the middle of the primary zone to create a

clearly captured flow field for discussion purposes.
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The fluid body in the primary zone of the pipe is drawn in such a way that the

x − y plan coincides with the cross-sectional area of the pipe and z axis coincides

with the longitudinal axis of the pipe (as shown in Fig. 4.12).

Fig. 4.10 and Fig. 4.11 show the velocity (color scale) and the velocity vectors, re-

spectively. From these two figures, it is clear that, as the water flow approaches the

blockage location, the flow velocity increases until it reaches the maximum value at

the vena-contracta (the region where sensor S-3 is located). In addition, flow sepa-

ration, high turbulence, and flow recirculation occur immediately downstream of the

blockage location, as noticed from the direction of the velocity vectors in this region

(Fig. 4.11).

Figure 4.10 Velocity along the primary pipe zone.
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Figure 4.11 Velocity vectors along the primary pipe zone.

Velocity Profiles

Velocity profiles at the location of sensors S-2, S-3, and S-4 (upstream, in the vicinity,

and downstream of the blockage location) are shown in Fig. 4.12. From this figure, it

is noted that the velocity profiles of the partially blocked pipe at sensors S-2 and S-4

(far away upstream and downstream of the blockage location) are not affected by the

blockage and they behave approximately as those of the intact pipe. However, the

velocity profile at sensor S-3 (in the vicinity of the blockage location) shows higher

velocity in the core of the pipe, as shown in the lower sub-figure to the left of Fig.

4.12 where the flow in the core of the partially blocked pipe is accelerated.

The variation among velocity profiles is attributed to the presence of the partial

blockage, which affects the flow characteristics and causes differential flow behaviors

in the vicinity of its location. These variations are captured by the numerical simu-

lation and by the acoustic emission experimental results and may be used to locate
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the partial blockage.
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Figure 4.12 Velocity profiles at sensors S-2, S-3, and S-4 for different pipe
conditions.

Flow Parameters of Interest

Flow parameters of interest in the current study include some flow characteristic pa-

rameters that are affected by the presence of a partial blockage and show abrupt

changes close to its location. These include, but are not limited to, eddy viscosity

(EV), turbulence eddy dissipation (TED), and turbulence kinetic energy (TKE). Cal-

culations of these parameters are performed to investigate the effect of the blockage

existence on each parameter. Figure 4.13, Fig. 4.14, and Fig. 4.15 show the variation

of each relevant parameter along the primary zone of the pipe for three different con-

ditions: an intact pipe, a pipe with a 40% diameter reduction, and a pipe with a 60%
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diameter reduction. From these figures, it is clear that there is a spike in the vicinity

of the blockage location (sensor S-3 location) the height of which is proportional to

the percent of diameter reduction. It is also clear that this spike occurs due to the

existence of the partial blockage and confirms the experimental results in which a

hump is noted at the same location.
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Figure 4.13 Eddy viscosity on the upper-wall of the pipe.

Comparison between Experimental and Numerical Results

The relative final accumulated AE energy during the experiment is compared to the

theoretical relative turbulence kinetic energy. As discussed earlier, the relative final

accumulated AE energy is obtained by normalizing the final accumulated AE energy

using its maximum value for each pipe condition. Similarly, the relative theoretical

turbulence kinetic energy is obtained by normalizing the theoretical turbulence ki-

netic energy using its maximum value for each pipe condition. Figure 4.16 shows the
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Figure 4.14 Turbulence eddy dissipation on the upper-wall of the pipe.

comparison between the relative final accumulated AE energy and the relative tur-

bulence kinetic energy for the two aforementioned partially blocked pipe conditions.

It is clear from this figure that there is an agreement between the theoretical and

experimental relative energy plots on showing a hump in the curve of the relationship

between the relative energy and the sensor location in the vicinity of the blockage

location. It is also important to note that the numerical calculations in which the

blockage information is known in advance agree with the experimental findings in

which the blockage location is identified from the recorded signal without a prior

knowledge.

4.6 Blockage Detection Procedure

This section discusses steps of detecting partial blockage in a pipe having water

flow under steady state conditions. A general procedure is introduced; however, the
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Figure 4.15 Turbulence kinetic energy on the upper-wall of the pipe.

approach is applied only on the current problem settings. Modifications are needed for

application on different system settings. A minimum number of 5 sensors is proposed

to be used for current approach application. The following steps may be used as a

guideline for the detection process:

1. Select the primary zone of the pipe under investigation.

2. Equally divide the primary zone into two parts.

3. Define the sensors spacing, S, as follows (see Fig. 4.17):

S = L/2(N − 1)

where L is the length of the primary zone and N is the number of sensors.

4. Place the sensors at the selected spacing, starting from the leading edge of the

primary zone.
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Figure 4.16 Experimental relative accumulated AE energy vs. numerical relative
turbulence kinetic energy; (a) 40% diameter reduction, (b) 60% diameter reduction.

5. Record the acoustic signal for the desired accumulation time (80 seconds).

6. Shift the row of sensors for the specified tripping distance in the flow direction.

7. Repeat steps 5 and 6 until the end of the primary zone is reached.

8. Draw the accumulated signal strength versus sensor location for each tripping

distance.

9. Locate the hump on the curve which represents the approximate blockage lo-

cation.
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Figure 4.17 Blockage detection procedure.
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Chapter 5

Use of Lower Harmonics of Pressure

Oscillations for Leak Detection in Liquid

Pipelines

5.1 Introduction

A simple technique for leak detection in liquid pipelines is presented in this chapter.

The governing equations are solved in the frequency domain using the transfer matrix

method (TMM). A direct relationship between the relative leak location and the

amplitude of pressure head oscillation is obtained. This relationship is utilized to

construct leak detection curves (LDCs) the characteristics of which are discussed

briefly. Unlike the relevant frequency response diagram (FRD) methods, the current

approach requires minimum efforts since it uses only the first four harmonics instead

of a large set of harmonics. The comparisons with the time domain solution by the

method of characteristics (MOC) and with the experimental data from the literature

show a satisfactory agreement.

5.2 Frequency Domain Analysis

The governing equations describing transient flow in the simple piping system

shown in Fig. 5.1 are (Chaudhry, 2015):
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Figure 5.1 Piping system for leak detection.

∂Q

∂x
+ gA

a2
∂H

∂t
= 0 (5.1)

∂H

∂x
+ 1
gA

∂Q

∂t
+ fQ2

2gDA2 = 0 (5.2)

in which, a is the wave speed, g is the acceleration due to gravity, f is the Darcy-

Weisbach friction factor, A is the cross-sectional area of the pipe, x is the distance

along the pipeline, positive in the downstream direction, t is the time, and D is

the pipe diameter. The variables H and Q are instantaneous pressure head and

instantaneous flow rate, which may be expressed as the sum of their mean values,

H0 and Q0, and their oscillations around the mean, h∗ and q∗, as shown in Fig. 3.2

(Chaudhry, 1970).

The substitution of H = H0 + h∗ and Q = Q0 + q∗ into Eqs. 5.1 and 5.2 yields

the following linear equations

∂q∗

∂x
+ gA

a2
∂h∗

∂t
= 0 (5.3)

∂h∗

∂x
+ 1
gA

∂q∗

∂t
+Rq∗ = 0 (5.4)

in which, the linearized resistance term for the turbulent flow, R, equals fQ0/gDA
2.

The pressure head oscillation around the mean, h∗, may be eliminated from the

previous two equations, yielding
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∂2q∗

∂x2 −
1
a2
∂2q∗

∂t2
− gAR

a2
∂q∗

∂t
= 0 (5.5)

The pressure head and discharge oscillations may be assumed as sinusoidal in

time, i.e., h∗ = Re [h(x)ejωt] and q∗ = Re [q(x)ejωt], where ω is the angular fre-

quency in radians per second, j =
√
−1, h and q are complex variables which are

functions of x only, and Re[ ] stands for the real part. These sinusoidal terms may

be substituted into Eq. 5.5 to obtain the field matrix, Fi, of the ith pipe which is

then used to derive the leak detection equations, as discussed in the following section.

Leak Detection Equations

A leak detection equation represents the relationship between the relative leak

location and the amplitude of pressure head oscillation. It may be derived for each

excitation frequency of the downstream valve which produces a sinusoidal pressure

head oscillation in the pipeline. The piping system is simulated in the frequency

domain and the governing equations are solved by using the transfer matrix method

(TMM). The leak is simulated as an orifice. The leak discharge is characterized by

its ratio to the mean discharge in the pipeline. The leak separates the pipeline into

two segments and the overall transfer matrix of the pipeline may be expressed as

(Chaudhry, 2014)

U =


u11 u12 u13

u21 u22 u23

u31 u32 u33

 = F2 P2 F1 (5.6)

where u11, u12, · · · are elements of the overall transfer matrix; F1 and F2 refer to the

field matrices of the pipe to the left and to the right of the leak, respectively, and P2

refers to the point matrix for the leak.
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The elements of the overall extended transfer matrix for a leaky pipe, u11 and u12,

with a valve oscillating at the 1st (fundamental) harmonic
(
ω = ωTH = πa

2L

)
may be

expressed as (see Appendix B)

u11 = − Ql0C

4∆H0
× versin (πLr) j (5.7)

u21 = C2Ql0

4∆H0
sin (πLr)− C j (5.8)

where, Lr is the relative leak location (leak location measured from the upstream

reservoir, Ll, divided by the pipe length, L); Ql0 is the steady state leak discharge for

the head at the leak, ∆H0, versin (πLr) = 2 sin2
(
Lr

π
2

)
, and C = a/(gA) is the pipe

characteristic impedance.

As shown in Appendix B, the following equations represent the relationship be-

tween the relative leak location and the pressure head oscillation for the first four

harmonics of the valve oscillation

hLn+1,1 =

2Hok

τo

2Ho

Qo

×

CQl0

4∆Ho

× versin (Lrπ) j

C2Ql0

4∆H0
sin (πLr)− Cj

− 1

(5.9)

hLn+1,2 =

2H0k

τ0

2H0

Q0
×
−1 + CQl0

4∆H0
× sin (2πLr) j

C2Ql0

2∆H0
sin2 (πLr)

− 1

(5.10)

hLn+1,3 =

2H0k

τ0

2H0

Q0
×
− CQl0

4∆H0
× versin (3πLr) j

C2Ql0

4∆H0
sin (3πLr) + Cj

− 1

(5.11)
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hLn+1,4 =

2H0k

τ0

2H0

Q0
×

1− CQl0

4∆H0
× sin (4πLr) j

−C
2Ql0

2∆H0
sin2 (2πLr)

− 1

(5.12)

The amplitude of pressure head oscillations may be normalized using the mean

pressure head, H0, to compute the relative amplitude of pressure head oscillation,

hr =
∣∣∣hLn+1

∣∣∣ /H0. The relationship between Lr and hr for the first four harmonics of

the pipeline is used to construct each corresponding leak detection curve.

Leak Detection Curves

A LDC represents the relationship between the relative leak location, Lr, and

the relative amplitude of pressure head oscillation, hr. The LDCs for the first four

harmonic are shown in Fig. 5.2. The left axis of this figure shows the ordinates of

the odd (1st and 3rd) harmonics, while the right axis shows the ordinates of the even

(2nd and 4th) harmonics. LDCs may be constructed in a similar way as that used to

construct the blockage detection curves (BDCs), introduced by Al-Tofan et al. (2018),

and has a similar number of inflection points. However, LDCs differ from BDCs in

their trends and location of maxima and minima. It may be noted from Fig. 5.2

that the maximum value of hr for the 1st harmonic LDC is obtained when the leak

is located at the upstream end of the pipeline. In addition, there is only one value of

the leak location that corresponds to each value of hr. However, for the 2nd harmonic

LDC, two values of the leak location are obtained for each value of hr, except when

the leak is located at the mid-length of the pipeline, where only one value of the leak

location is obtained. This is because of the symmetry feature of the 2nd harmonic

LDC. For the 3rd harmonic LDC, there are two maxima (when the leak is located

at Lr = 0 and 2/3) and two minima (when the leak is located at Lr = 1/3 and 1).
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For all other locations, there are three values of the leak location that correspond to

each value of hr. For the 4rd harmonic LDC, there are two maxima (when the leak

is located at Lr = 1/4 and 3/4) and three minima (when the leak is located at Lr =

0, 1/2, and 1). For all other locations, there are four values of the leak location that

correspond to each value of hr. However, as in the BDCs, there is only one shared

value for the possible leak location which can be obtained by using the 1st harmonic

LDC and reconfirmed by using the other three LDCs. Using additional LDCs (higher

than 4th harmonic) results in problems related to using higher harmonics, as discussed

in the Introduction.

5.3 Numerical Application

Equations 5.9 through 5.12 show that there is a direct relationship between the

relative leak location, Lr, and the absolute value of the pressure head oscillation

at the valve,
∣∣∣hLn+1

∣∣∣. As discussed earlier, the latter may be normalized using the

mean pressure head in the pipeline to give the relative amplitude of pressure head

oscillation, hr. The relationship between Lr and hr is used to construct LDCs for the

first four harmonics of the pipeline. In the current numerical application, a frictionless

system is considered first with a relative leak discharge, qr = 0.1 (where qr is the ratio

of the leak discharge to the initial discharge in the pipeline). The effect of friction

and leak discharge are considered later. The pipe length, L, pipe diameter, D, initial

steady-state discharge, Q0, mean pressure head, H0, wave speed, a, initial relative

valve opening, τ0, and the amplitude of the valve oscillations, k, are 1600 m, 0.3 m,

0.1 m3/s, 50 m, 1000 m/s, 0.9, and 0.1, respectively.

The leak detection curves for a system with the aforementioned parameters are

constructed, as shown in Fig. 5.2. It can be noticed from the 1st harmonic LDC that

there is only one leak location for each value of the relative amplitude of pressure

head oscillation in the piping system. In addition, as the leak location is changed
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Figure 5.2 Leak detection curves for the first four harmonics.

from the upstream reservoir towards the downstream valve (i.e., Lr = 0 to 1), the

relative amplitude of pressure head oscillation, hr, decreases gradually from 0.222 to

0.202 or the amplitude of pressure head oscillation decreases gradually from 11.1 m

to 10.1 m.

For the 2nd harmonic LDC, as the leak location approaches the pipe mid-length

(i.e., Lr = 0.5), the amplitude of pressure head oscillation approaches its maximum

value depending on the leak discharge (0.01 m3/s in this example). For a leak loca-

tion away from the pipe mid-length towards the upstream reservoir or towards the

downstream valve, hr decreases gradually until it reaches its minimum value at the

boundary. In addition, the curve is symmetric around the pipe mid-length i.e., for

each value of hr, there are two possible leak locations except for the pipe mid-length.

One of these two locations is on the reservoir side of the pipe mid-length and the
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other is on the valve side.

0.90

0.94

0.98

1.02

1.06

1.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h r
1st

 /h
r

3rd
 

Lr

L

R

Figure 5.3 Relative amplitude of pressure head oscillation at first and third
harmonic vs. leak location.

For the 3rd and 4th harmonic LDCs, there are multiple leak locations for each value

of hr, except at the points of maxima and minima. One of these possible locations

obtained from each LDC is the same as that obtained from the 1st harmonic LDC.

However, it is not recommended to use only the 1st harmonic LDC; a combination of

the first four harmonics is recommended. One of these combinations uses the ratio of

the amplitude of pressure head oscillation obtained from oscillating the downstream

valve at the 1st harmonic to that obtained from oscillating the downstream valve at

the 3rd harmonic. This ratio is shown in Fig. 5.3 and may be used to determine

whether the leak exists on the reservoir side or on the valve side of the pipe mid-

length. Region (L) in Fig. 5.3 (in which this ratio is greater than 1) corresponds to

a leak on the reservoir side of the pipe mid-length, while region (R) (in which this
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ratio is less than 1) corresponds to a leak on the valve side.

According to the LDC for the 1st harmonic of the current example, any value of

hr within the range 0.222 to 0.202 may be obtained in a field application depending

on the location of an unknown leak. Once this value is obtained, the 1st harmonic

LDC may be used to locate the leak. For example, an hr value of 0.2148 corresponds

to the Lr value of 0.4. The latter may be multiplied by the full length of the pipeline

to give a leak location of 640 m from the upstream reservoir. For the 2nd, 3rd and 4th

harmonic LDCs, the values in Table 5.1 are obtained.

Table 5.1 Relative amplitude of pressure head oscillation at the downstream end of
the pipeline and the corresponding leak location for different harmonics.

Harmonic Relative pressure Possible relative Actual Possible
head oscillation leak location pressure head leak
amplitude (hr) (Lr) oscillation, m location, m

1st 0.2148 0.4 10.74 640

2nd 0.03516 0.4 1.758 640
0.6 960

3rd 0.20382
0.269

10.191
430.4

0.4 640
0.931 1489.6

4th 0.01487

0.1

0.7435

160
0.4 640
0.6 960
0.9 1440

It can be noticed from this table that there is only one shared leak location among

all the four LDCs (Lr = 0.4). In addition, the ratio between the relative amplitude

of pressure head oscillation resulting from oscillating the valve at the 1st harmonic to

that resulting from oscillating the valve at the 3rd harmonic is greater than 1, which

reconfirm that the leak is on the reservoir side of the pipe mid-length.
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Effect of Leak Size

Three different leak discharges are considered to discuss the effect of the leak

discharge on the LDCs. Leak discharge is expressed by its relative value, qr, repre-

senting the leak discharge, Ql, divided by the mean discharge in the pipeline, Q0.

Figure 5.4 shows the 1st and 3rd (odd) harmonics LDCs for three values of qr (0.15,

0.25, and 0.35) using the same system settings and parameters from the "Numerical

Application". According to this figure, for the 1st harmonic, the relative amplitude of

pressure head oscillation, hr, decreases as the relative leak discharge, qr, increases for

all possible leak locations except when the leak is located at the upstream end of the

pipeline (Lr = 0). At this location, a pressure head oscillation node in terms of the

leak size is created in which the relative amplitude of the pressure head oscillations is

the same for all leak discharges. For the 3rd harmonic, two pressure head oscillation

nodes in terms of the leak size are created (at Lr = 0 and Lr = 2/3). For all other

possible locations, the relative amplitude of pressure head oscillation, hr, decreases

as the relative leak discharge, qr, increases.

The effect of the leak size on the 2nd and 4th (even) harmonics is shown in Fig.

5.5. From the 2nd harmonic LDC presented in this figure, it is seen that there are

two pressure head oscillation nodes in terms of the leak size: at Lr = 0 and at Lr

= 1. However, for the 4th harmonic, there are three pressure head oscillation nodes

in terms of the leak size: at Lr = 0, Lr = 1/2, and Lr = 1. For all other possible

locations, and unlike the case of the odd harmonics, the relative amplitude of pressure

head oscillation, hr, increases as the relative leak discharge, qr, increases.

Effect of Friction

In this section, the effect of steady and unsteady friction on the amplitude of

pressure head oscillation and subsequently on the LDCs is discussed.
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Figure 5.4 Leak detection curves for first and third harmonics with different leak
sizes.

Steady Friction

As an example, steady friction effect represented by Darcy-Weisbach friction fac-

tor, f , on the relationship between Lr and hr for the 1st and 3rd harmonics is discussed

as follows. Three values of f (0, 0.01, and 0.02) are considered, as shown in Fig. 5.6.

In this figure, the upper two curves represent the 1st and 3rd harmonic LDCs for a

frictionless system, while the lower four curves represent the 1st and 3rd harmonic

LDCs for a system with f =0.01 and f = 0.02, respectively. The lower part of this

figure shows enlargements for the interaction points between the 1st and 3rd harmonic

LDCs.

It is noticed that the amplitude of pressure head oscillation is inversely propor-

tional to the steady friction factor, f , for all possible leak locations and for both 1st

and 3rd (odd) harmonics. In addition, the 1st and 3rd harmonic LDCs for the friction-
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Figure 5.5 Leak detection curves for second and fourth harmonics with different
leak sizes.

less system intersect at three locations: Lr =0, 0.5, and 1 (points a, b, and c in the

upper part of Fig. 5.6). That means that the pressure head oscillation is the same

whether the downstream valve is oscillated at the 1st or 3rd harmonic. The location

of these intersection points, however, is changed as the steady friction is included in

the calculations, as shown in the lower four curves of Fig. 5.6 (insets d, e, f, g, h, and

i). The intersection between the 1st and 3rd harmonic LDCs for a system including

friction occurs only at two locations: slightly to the left of the downstream boundary

and slightly to the left of the pipeline mid-length. Point ao in inset a becomes two

points, a1 and a2 (inset d), and there is no more intersection between the two curves

(the 3rd harmonic curve being below the 1st harmonic curve and any downward shift

resulting from increasing steady friction keeps the two curves apart). Point bo in inset

b becomes two points, b1 and b2 (inset e), and there is a new point of intersection
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at b3. Point co in inset c becomes two points, c1 and c2 (inset f), and there is a new

point of intersection at c3.

The amplitude of pressure head oscillation at points a1, b1 and c1 is greater than

that at points a2, b2 and c2, respectively. However, the difference in the amplitude

of pressure head oscillation between each two corresponding points (a1 and a2, for

example) is not the same as that between any other corresponding points (b1 and

b2, or c1 and c2), but the difference between each two corresponding points increases

as steady friction factor increases, as shown in insets g, h, and i. The change in

the intersection points that occurs due to the inclusion of steady friction may be at-

tributed to the proportional relationship between steady friction and the number of

harmonics. In other words, the effect of steady friction on the amplitude of pressure

head oscillation is greater in the case of oscillating the downstream valve at the 3rd

harmonic than that in the case of oscillating the downstream valve at the 1st har-

monic. This differential effect changes the ratio between the amplitude of pressure

head oscillation resulted from oscillating the downstream valve at the 1st harmonic

to that from oscillating the downstream valve at the 3rd harmonic, which is used

to determine the side of the pipe mid-length in which the leak exists. As discussed

previously for a frictionless system, this ratio is greater than 1 when the leak exists

on the reservoir side of the pipe mid-length and less than 1 when the leak exists on

the valve side. For a frictional system, however, this is not true for all possible leak

locations. For a short section near the downstream valve, this ratio is greater than

1 in spite of that the leak is on the valve side. In addition, for a short section to

the left of the pipe mid-length this ratio is less than 1 in spite of that the leak is on

the reservoir side. The extent of these two regions and the above mentioned ratio

deviation from 1 increases as steady friction increases.
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included.

40

Figure 5.6 Comparison of the first and third harmonic leak detection curves for a
system with and without friction; only steady friction included. Insets a through i
are enlargements of the interaction points.
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Unsteady Friction

The effect of inclusion of unsteady friction in the calculations of pressure head

oscillation and the subsequent effect on the leak detection curves is discussed in the

following paragraphs. Numerous models for investigating the effect of unsteady fric-

tion on the pipelines transient flow are proposed in the literature. However, the model

of Vitkovsky et al. (2003) is used in the current study for its simplicity and suitabil-

ity for simple reservoir-pipeline-valve system. According to this model, the steady

friction is increased by an amount of 2jω
gA

(
1
C∗ + jωD2

4ν

)−1/2
(in which the shear decay

coefficient, C∗ = 7.41/Re
k, Re is the Reynold’s number, ν is the kinematic viscosity

of water, and k = log10(14.3/Re
0.05)) to account for unsteady friction. The LDCs are

reconstructed by including this amount in the calculation of pressure head oscillation

and compared to those constructed with only steady friction included (taking f as

0.01), as shown in Fig. 5.7. From this figure, it can be seen that the inclusion of

unsteady friction results in a minor shift of the leak detection curves. This shift

occurs in two different ways: either downward (in the case of the odd harmonics) or

upward (in the case of the even harmonics). In addition, for odd harmonics, this shift

is greater in the case of 3rd harmonic than that in the case of 1st harmonic. Similarly,

for even harmonics, this shift is greater in the case of 4th harmonic than that in the

case of 2nd harmonic. However, the current approach considers one harmonic at a

time (up to the 4th harmonic) to analyze the variation of the amplitude of pressure

head oscillation for different leak locations.

5.4 Model Verification

The outputs of the current approach are compared with those obtained in the

time domain using the method of characteristics (MOC) and with the experimental

data available in the literature, as discussed in the following paragraphs.
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Figure 5.7 Comparison of the leak detection curves with and without including of
unsteady friction (f = 0.02) (a, b, c, and d unsteady friction is not included; a’, b’,
c’, and d’ unsteady friction is included).

Method of Characteristics

Leak detection curves proposed in the current study are reconstructed in the time

domain using the method of characteristics (MOC). A simple system is used consisting

of an upstream reservoir, a pipeline, and a downstream valve. The upstream reservoir

supplies 0.0001 m3/s of water to the pipeline which leaks at a rate of 0.000025 m3/s

(qr=0.25). One leak is considered at a time and placed at different locations at 50

m spacing along a 1600 m long pipeline. All other parameters are kept the same as

those considered in the Numerical Application. The downstream boundary is applied

by relating the relative valve opening, τ , to time, t, in a sinusoidal relationship such

that τ = τ0 + k sin(ω t), in which τ0 is the mean valve opening, k is the amplitude of
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the relative valve opening, and ω is the frequency of the oscillating valve. The leak is

also simulated as an intermediate boundary condition at each of the above specified

locations. Computations are done for 2800 time steps with each time step equal to

0.025 seconds in order to ensure that the steady-oscillatory flow is established and the

amplitude of pressure head oscillation is constant. The maximum-minimum pressure

head difference is taken for the last 10 seconds and no noise in the signal is observed.

As an example, the downstream valve is oscillated at the 2nd harmonic and the

pressure head response at the downstream end of the pipeline is calculated with the

leak existing at different locations, one at a time, as shown in Fig. 5.8. The relative

amplitude of pressure head oscillation, hr, is determined as ∆HLr/2H0, where ∆HLr

is the maximum-minimum pressure head difference for each corresponding relative

leak location and H0 is the mean pressure head.

The calculations are done for the other leak locations with the downstream valve

oscillations at other harmonics to construct the LDCs for the first four harmonics.

The LDCs obtained by the TMM (in the frequency domain) are compared with those

obtained by the MOC (in the time domain), as shown in Fig. 5.9. From this figure,

it is clear that the amplitude of pressure head oscillations are slightly higher by the

TMM than those obtained by the MOC for the 1st and 3rd (odd) harmonics and for

all possible leak locations (Lr = 0 to 1). This overestimation may be attributed to

the linearity assumption in the TMM solution. However, there is almost full agree-

ment between the results computed by the two methods for the 2nd and 4th (even)

harmonics.

Experimental Data

The presence of a leak in a pipeline produces an oscillatory pattern in the sys-

tem frequency response diagram (FRD). This oscillatory pattern has a period that
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Figure 5.8 Pressure head oscillations of the downstream valve sinusoidal movement
at the second harmonic for different leak locations.

may be related to the leak location. Sattar (2015) presented this relationship as

Ll/L = 2/∆ωeven
r in which Ll is the leak location from the downstream valve, L is the

pipe length, and ∆ωeven
r is the period of the even harmonics leak induced oscillation

pattern in the FRD. He extracted the FRD for a short pipe in order to determine this

oscillation period. His data points include the relative amplitude of pressure head

oscillations, hr, corresponding to a set of relative frequencies up to the 6th harmonic,

as shown in the bottom and left axes of Fig. 5.10 (a or b). The piping system he used

consists of a constant-level upstream reservoir, a pipeline, and a downstream valve.

The height of water in the reservoir is 7.19 m and the mean discharge supplied to the

pipe is 0.000284 m3/s. The pipe length and diameter are 156 m and 0.0254 m, re-

spectively. The pipe is leaking through an orifice of a relative area opening, Aorf/Ap,

of 0.004 (where Aorf is the area of the leak orifice and Ap is the cross-sectional area

of the pipe). Using a typical orifice equation, the leak discharge can be determined as

78



www.manaraa.com

QL = CdAorf
√

2gHL (in which QL is the leak discharge for the head on the leak, HL,

and Cd is the coefficient of the discharge). The leak orifice is located at a distance

of 72.12 m from the downstream valve. Using the proposed relationship between the

even harmonics oscillation period and the relative leak location, the latter may be

determined as 2/∆ωeven
r = 0.5. The same experimental system is simulated in the

current model and the even (2nd and 4th) harmonic LDCs are constructed to be used

for leak localization, as shown in the right and top axes of Fig. 5.10 (a and b). The

2nd harmonic LDC is shown in Fig. 5.10 (a), while the 4th harmonic LDC is shown

in Fig. 5.10 (b). In order to compare the theoretical value of the leak location to the

experimental value, the former may be determined by two simple steps:

1. Determine the measured value of the relative amplitude of pressure head oscil-

lation, hr, from the experimental results (in the case of the 2nd harmonic, for example,

this value equals 0.134 as determined from the vertical axis on the left of Fig. 5.10

(a) corresponding to ωr = 2 from the bottom axis).

2. Locate hr value on the vertical axis on the right and project a horizontal line

to intersect the LDC. Project the intersection points vertically on the top axis to find

the possible leak locations, Lr.

Two values of Lr (0.487 and 0.553) are obtained from the 2nd harmonic LDC,

while four values of Lr (0.03, 0.47, 0.537, and 0.97) are obtained from the 4th har-

monic LDC. However, only two values obtained from the 4th harmonic LDC (0.47 and

0.537) are close to the two values obtained from the 2nd harmonic LDC and may be

considered for further discussion. Either of these values give a good approximation

of the leak location. The difference between the actual and calculated relative leak

locations may be attributed to the uncertainty in the calculations of the unsteady

friction and the experimental estimation of the system parameters.
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Figure 5.9 Comparison of the leak detection curves obtained by using the method
of characteristics and the transfer matrix method.

5.5 Potential for Field Applications

The leak detection technique proposed in this study using the relationship be-

tween the amplitude of pressure head oscillation and leak location to detect leaks in

pipelines has the potential for real-life applications. A prototype test of an intact

pipe may be used to verify the system parameters. Discharge measurements at the

downstream end of the pipe are carried out in order to estimate the leak discharge.

A sinusoidal opening and closing of the downstream valve at the first four harmonics

of the pipeline produces a sinusoidal pressure head oscillations. The relative ampli-

tude of pressure head oscillation, hr, at the downstream end of the pipeline is then

determined. The corresponding LDC for each specific harmonic is used to determine

the relative leak location, Lr. There should be one shared value of the anticipated

leak location from each LDC. This value may be slightly different at each harmonic

due to the estimation accuracy of the system parameters. This difference, however,
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FIG. 12: Comparison of experimentally measured and computed relative blockage locations.
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should be small that makes it easy to determine the anticipated leak location. Other

uncertainties of the system measurements and numerical assumptions may be taken

into consideration for more accurate determination of leak locations.
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Chapter 6

Summary and Conclusions

Following are summary and conclusion of the blockage detection approaches using

pressure head oscillation and acoustic signal emission, and the leak detection approach

using pressure head oscillation proposed by the current study.

6.1 Blockage Detection by Using Lower Harmonics of Pressure

Oscillations

A technique to detect partial blockages in liquid pipelines is presented in this study.

A simple reservoir-pipe-valve system is considered in which the downstream valve is

oscillated at the first four harmonics of the pipeline to produce periodic flow. The

governing equations are solved in the frequency domain using the transfer matrix

method (TMM) and direct relationships between the pressure head oscillation and

the blockage location are determined. These relationships are used to construct

blockage detection curves the characteristics of which are discussed briefly. The

effect of steady and unsteady friction on the model outputs and the formation of

the pressure head oscillation nodes are discussed. As compared to the traditional

frequency response diagram methods which require computing at several different

frequencies, the current approach is more practical since it requires extraction of the

amplitude of the pressure-head oscillation on first four harmonics to estimate the

blockage location. The model results agree satisfactorily with those obtained in the

time domain by the method of characteristics and with experimental measurements

reported in the literature.
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Model application shows that there is only one shared value of the partial blockage

location among all the four modes of the downstream valve oscillations. It is found

that the blockage location is independent of the blockage size if the partial blockage

occurred at the location of the pressure head oscillation nodes. This limits the fact

that a partial blockage in the pipeline increases the amplitude of the pressure head

oscillation at even harmonics at all blockage locations rather than at the pressure

head oscillation nodes. Also, it is shown that, for the 1st harmonic, the rate of

change of the amplitude of the pressure head oscillation decreases as the blockage

size decreases.

The amplitude of the pressure head oscillations at the downstream end of the

pipeline calculated in the current approach are slightly overestimated as compared to

those obtained by the method of characteristics for the 1st and 3rd (odd) harmonics.

However, there is almost full agreement between the two methods for the 2nd and

4th (even) harmonics. Comparing the results of the current approach with the ex-

perimental measurements shows that this approach is promising in determining the

blockage location along a pipeline and may be adapted for field applications.

6.2 Blockage Detection by Continuous Emission of Acoustic Signal

This part of the current study includes exploiting the interaction between a partial

blockage in a pipe and the steady-flow characteristics to detect the partial blockage.

The partial blockage emits a continuous acoustic signal which can be recorded by a

certain type of acoustic sensors (R6I-AST). The relationship between the accumu-

lated signal strength and the sensor location is plotted on a curve which shows a

hump in the vicinity of the blockage location. The height of the hump is proportional

to the blockage size (the percent of reduction in the pipe diameter). The flow field in

the primary zone of the pipe is described using a conventional CFD approach with
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Reynolds-averaged Navier Stokes equations solved by using the FLUENT commer-

cial package of Ansys software. The accumulated AE energy and the flow turbulence

kinetic energy at the sensor locations are normalized using their relevant maximum

values and compared on graphs in which they agreed on the hump created due to the

blockage existence. This approach has the potential to be applied for gas and steam

pipelines.

6.3 Leak Detection by Using Lower Harmonics of Pressure

Oscillations

A leak detection technique in liquid pipelines using lower harmonics of the pipeline

is presented in Chapter 5. The piping system consists of a constant-level reservoir at

the upstream of the pipeline and a valve that can be closed and opened sinusoidally

at the downstream. The sinusoidal movement of the downstream valve produces a

sinusoidal pressure head oscillations the amplitude of which is related to the mode of

oscillation. The first four harmonics of the pipeline are considered in the frequency

domain analysis using the transfer matrix method (TMM). A direct relationship be-

tween the relative leak location and the amplitude of the pressure head oscillation

at the downstream end of the pipeline is determined for the first four harmonics of

the downstream valve oscillation. Each relationship is used to construct a leak de-

tection curve (LDC) the characteristics of which are discussed briefly. The effect of

steady and unsteady friction and the formation of the pressure head oscillation nodes

are discussed. The outputs of the proposed technique show a satisfactory agreement

with those obtained in the time domain using the method of characteristics (MOC).

In addition, a leak in a pipeline from the literature is localized by using the 2nd and

4th (even) harmonics LDCs from the current approach and a good approximation

of the leak location is obtained. The difference between the actual and calculated
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relative leak locations may be attributed to the uncertainty in the calculation of

unsteady friction and the experimental estimation of the system parameters. The

current approach uses minimum efforts as compared to the traditional frequency re-

sponse diagram (FRD) methods which require several runs of the valve oscillation

at different frequencies to determine the leak location. The current approach has

the potential to be implemented in the field, taking into consideration a number of

uncertainties related to the real-life applications.
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Appendix A

Derivations of the Blockage Equations

The overall extended transfer matrix, U, for the reservoir-pipe-valve system, Fig.

3.1, may be written as

U =


u11 u12 u13

u21 u22 u23

u31 u32 u33

 = F2 P2 F1 (A.1)

in which

F2 =


cos b2ω − j

C
sin b2ω 0

−jC sin b2ω cos b2ω 0

0 0 1

 ; P2 =


1 0 0

−2∆H0

Q0
1 0

0 0 1

 and

F1 =


cos b1ω − j

C
sin b1ω 0

−jC sin b1ω cos b1ω 0

0 0 1


Multiplying these matrices, u11 and u21 of the overall extended transfer matrix

may be written as

u11 = cos (b2ω) cos (b1ω) + cos (b1ω) j
C

sin (b2ω) 2∆H0

Q0
+ j

C
sin (b2ω) jC sin (b1ω)

(A.2)

For fundamental (1st) harmonic, ω = ωTH = aπ

2L . Simplifying using bi = Li
ai
,

L1 = Lb and L2 = L− Lb and then taking the relative blockage location, Lr = Lb/L

gives
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u11 = cos
(
π

2 (1− Lr)
)

cos
(
π

2Lr
)

+ cos
(
π

2Lr
)2∆H0j

CQ0
sin

(
π

2 (1− Lr)
)
− sin

(
π

2Lr
)

sin
(
π

2 (1− Lr)
)

Note that, cos
(
π
2 (1− Lr)

)
= sin

(
π
2Lr

)
and sin

(
π
2 (1− Lr)

)
= cos

(
π
2Lr

)
. Hence

using trigonometric identities, this equation may be simplified to

u11 = 2∆H0

CQ0
cos2

(
π

2Lr
)
j

u21 =
(
−Cj sin (b2ω)− cos (b2ω)2∆H0

Q0

)
cos (b1ω)

− cos (b2ω) Cj sin (b1ω) (A.3)

For fundamental (1st) harmonic,

u21 = cos
(
Lb
a

aπ

2L

)
(−Cj) sin

(
L− Lb
a

aπ

2L

)
− 2∆H0

Q0
cos

(
Lb
a

aπ

2L

)
cos

(
L− Lb
a

aπ

2L

)
− cos

(
L− Lb
a

aπ

2L

)
(Cj) sin

(
Lb
a

aπ

2L

)

which may be further simplified to

u21 = −∆H0

Q0

(
2 sin

(
π

2Lr
)

cos
(
π

2Lr
))
− Cj = −∆H0

Q0
sin (πLr)− Cj (A.4)

Utilizing the extended point matrix and the boundary conditions at the valve

hLn+1 = u21 q
R
1 + u23 (A.5)

where qR1 = −
u23 −

2H0

Q0
u13 + 2H0k

τ0
u33

u21 −
2H0

Q0
u11 + 2H0k

τ0
u31

where τ0 is the initial relative valve opening and k is the amplitude of the valve

sinusoidal motion.

Since the oscillating valve is the only forcing function, u13 = u23 = u31 = 0,

u33 = 1 and hLn+1 =
(

2H0k

τ0

)
/

(
2H0

Q0

u11

u21
− 1

)
, then substituting for u11 and u21 in

Eq. A.5 results in
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hLn+1,1 =

2H0k

τ0

4H0

Q0

∆H0

CQ0
cos2

(
π

2 (Lr)
)
j

−∆H0

Q0
sin (πLr)− Cj

− 1

(A.6)

Following the same steps, similar equations may be obtained for a valve oscillating

at the 2nd, 3rd and 4th harmonics as follows

hLn+1,2 =

2H0k

τ0

2H0

Q0

−1 + ∆H0

CQ0
sin (2πLr)j

2∆H0

Q0
cos2 (πLr)

− 1

(A.7)

hLn+1,3 =

2H0k

τ0

4H0

Q0

−∆H0

CQ0
cos2

(3π
2 (Lr)

)
j

∆H0

Q0
sin (3πLr) + Cj

− 1

(A.8)

hLn+1,4 =

2H0k

τ0

2H0

Q0

1− ∆H0

CQ0
sin (4πLr)j

−2∆H0

Q0
cos2 (2πLr)

− 1

(A.9)

in which, hLn+1,1, hLn+1,2, hLn+1,3 and hLn+1,4 are the amplitudes of the pressure head

oscillations at the valve for the 1st, 2nd, 3rd and 4th harmonics, respectively. Now,

the relative amplitude of the pressure head oscillation, hr, for each lower harmonic

is determined by dividing the absolute value of the complex number obtained from

each of the above equations by the height of water in the upstream reservoir, H0.

The relative amplitude of the pressure head oscillation for the first harmonic, for

instance, may be determined as follows
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Let a1 = 2H0k

τ0
; a2 = 4H0

Q0

∆H0

CQ0
cos2

(
π

2Lr
)

;

a3 = −∆H0

Q0
sin (πLr); a4 = a1a3;

a5 = −Ca1; a6 = a2 + C;

a7 = −a3a4 + a5a6

a32 + a62 ; a8 = a4a6 + a3a5

a32 + a62

which results in

hLn+1,1 = a7 − a8j, hr1 =

∣∣∣hLn+1,1

∣∣∣
H0

(A.10)

In this expression, hr1 is the relative amplitude of the pressure head oscillation at

the downstream end of the pipeline when the valve is oscillating at the 1st harmonic.

A similar procedure is followed to obtain the relative amplitude of the pressure head

oscillation at the downstream end of the pipeline for an oscillating valve at the 2nd,

3rd and 4th harmonics.
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Appendix B

Derivations of the Leak Equations

The overall extended transfer matrix, U, for the reservoir-pipe-valve system, Fig.

5.1, may be written as

U =


u11 u12 u13

u21 u22 u23

u31 u32 u33

 = F2 P2 F1 (B.1)

This matrix may be obtained by ordered multiplication of the field matrix of the

piece of the pipeline to the right of the leak, F2, the point matrix of the leak, P2, and

the field matrix of the piece of the pipeline to the left of the leak, F1. The oscillating

valve is the only forcing function, so the following multiplication may be considered

=

 cos b2ω − j
C

sin b2ω

−jC sin b2ω cos b2ω


 1 − Ql0

2∆H0

0 1


 cos b1ω − j

C
sin b1ω

−jC sin b1ω cos b1ω


The ordered multiplication of the above matrices gives the elements u11 and u21

of the overall transfer matrix as

u11 = cos b2ω × cos b1ω

+
[
cos b2ω ×

(
− Ql0

2∆H0

)
×− j

C
sin b1ω

]
− jC sin b1ω

For fundamental (1st) harmonic, ω = ωTH = aπ

2L . Simplifying using bi = Li
ai
,

L1 = Ll and L2 = L−Ll and then taking the relative leak location, Lr = Ll/L gives

u11 = cos
(
L− Ll
L

π

2

)
× cos

(
Ll
L

π

2

)
+ cos

(
L− Ll
L

π

2

)
×
(
− Ql0

2∆H0

)
×

− jC sin
(
Ll
L

π

2

)
+ j

C
sin

(
L− Ll
L

π

2

)
×−jC sin

(
Ll
L

π

2

)
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Using trigonometric identities gives

u11 = sin
(
Ll
L

π

2

)
× cos

(
Ll
L

π

2

)
+

sin
(
Ll
L

π

2

)
×
(
−Ql0Cj

2∆H0

)
× sin

(
Ll
L

π

2

)
− cos

(
Ll
L

π

2

)
× sin

(
Ll
L

π

2

)
=
(
−Ql0Cj

2∆H0

)
× sin2 Lr

π

2

Note that, 2 sin2
(
Lr

π
2

)
= versin (πLr)

Hence u11 =
(
− Ql0C

4∆H0

)
× versin (πLr) j

u21 =− Cj sin
(
L− Ll
L

π

2

)
× cos

(
Ll
L

π

2

)
+(

−Cj sin
(
L− Ll
L

π

2

)
×
(
− Ql0

2∆H0

)
+ cos

(
L− Ll
L

π

2

))(
−Cj sin

(
Ll
L

π

2

))
Using similar simplifications to that used in u11 derivation

u21 = Ql0C
2

4∆H0
× sin (πLr)− Cj

The pressure head oscillation in the downstream end of the pipeline may be related

to the discharge to the left of the first section in the pipeline (immediately to the

right of the reservoir-pipeline intersection) utilizing the point matrix of the leak and

the boundary conditions at the valve, as follows

hLn+1 = u21q
R
1

where qR1 =

2H0k

τ0
2H0

Q0
u11 − u21

Hence hLn+1 =

2Hok

τo
2Ho

Qo

u11

u21
− 1

Substitute for u11 and u21 in the last equation gives

hLn+1,1 =

2Hok

τo

2Ho

Qo

×

CQl0

4∆Ho

× versin (Lrπ) j

C2Ql0

4∆H0
sin (πLr)− Cj

− 1

(B.2)
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Using the same steps, similar equations can be obtained for the case of a valve

oscillating under the 2nd. 3rd, and 4th harmonics to give

hLn+1,2 =

2H0k

τ0

2H0

Q0
×
−1 + CQl0

4∆H0
× sin (2πLr) j

C2Ql0

2∆H0
sin2 (πLr)

− 1

(B.3)

hLn+1,3 =

2H0k

τ0

2H0

Q0
×
− CQl0

4∆H0
× versin (3πLr) j

C2Ql0

4∆H0
sin (3πLr) + Cj

− 1

(B.4)

hLn+1,4 =

2H0k

τ0

2H0

Q0
×

1− CQl0

4∆H0
× sin (4πLr) j

−C
2Ql0

2∆H0
sin2 (2πLr)

− 1

(B.5)

where, hLn+1,1, hLn+1,2, hLn+1,3, and hLn+1,4 are amplitudes of pressure head oscilla-

tions at the downstream end of the pipeline for the 1st, 2nd, 3rd, and 4th harmonics,

respectively.

Now, the relative pressure head oscillations, hr, for each lower harmonic is deter-

mined by dividing the length of the complex number obtained from each of the above

equations by the mean pressure head in the pipe, Ho. The length of the complex

number for the first harmonic, as an example, may be determined as follows:

Let, a1 = 2H0k

τ0
; a2 = 2H0k

Q0
; a3 = CQl0

4∆H0
×versin (Lrπ) ; a4 = C2Ql0

4∆H0
sin (πLr)

hLn+1,1 = a1

a2
a3j

a4 − Cj
− 1

= a1
a2a3j − (a4 − Cj)

a4 − Cj

= a1(a4 − Cj)
−a4 + (a2a3 + C)j = a5 − a6j

a8 + a7j
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where, a5 = a1 · a4; a6 = −Ca1; a7 = A2A3 + C; and a8 = −a4

Hence hLn+1,1 = a5 − a6j

a8 + a7j
· a8 − a7j

a8 − a7j

where, (a8 − a7j) is the denominator conjugate, hence it may be written as

hLn+1,1 = a5a8 − a5A7j − a6A8j + a6a7j
2

a82 − a7a8j + a7a8j − a72j2

= (a5a8 − a6a7)− (a5a7 + a6a8) j
a72 + a82

Let, a9 = a5a8 − a6a7

a72 + a82 ; a10 = a5a7 + a6a8

a72 + a82 Then,

hLn+1,1 = a9 − a10j∣∣∣hLn+1,1

∣∣∣ =
√

(a9)2 + (−a10)2

hr1 =

∣∣∣hLn+1,1

∣∣∣
H0

where, hr1 is the relative pressure head oscillation at the downstream end of the

pipeline when the valve is oscillated at the 1st harmonic.

A similar procedure is followed to obtain the relative pressure head oscillations at

the downstream end of the pipeline when the valve is oscillated at the 2nd, 3rd, and

4th harmonics.
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